This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of Gleason p. 135. (Contributed by NM, 30-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑗 = 0 → ( 𝑀 + 𝑗 ) = ( 𝑀 + 0 ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝑗 = 0 → ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 + 0 ) ) ) |
| 3 | oveq2 | ⊢ ( 𝑗 = 0 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 0 ) ) | |
| 4 | 3 | oveq2d | ⊢ ( 𝑗 = 0 → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 0 ) ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( 𝑗 = 0 → ( ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) ↔ ( 𝐴 ↑ ( 𝑀 + 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 0 ) ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑗 = 0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 0 ) ) ) ) ) |
| 7 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝑀 + 𝑗 ) = ( 𝑀 + 𝑘 ) ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) ) |
| 9 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑘 ) ) | |
| 10 | 9 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| 11 | 8 10 | eqeq12d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) ↔ ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑗 = 𝑘 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑀 + 𝑗 ) = ( 𝑀 + ( 𝑘 + 1 ) ) ) | |
| 14 | 13 | oveq2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 + ( 𝑘 + 1 ) ) ) ) |
| 15 | oveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) | |
| 16 | 15 | oveq2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) |
| 17 | 14 16 | eqeq12d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) ↔ ( 𝐴 ↑ ( 𝑀 + ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 18 | 17 | imbi2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 19 | oveq2 | ⊢ ( 𝑗 = 𝑁 → ( 𝑀 + 𝑗 ) = ( 𝑀 + 𝑁 ) ) | |
| 20 | 19 | oveq2d | ⊢ ( 𝑗 = 𝑁 → ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) ) |
| 21 | oveq2 | ⊢ ( 𝑗 = 𝑁 → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ 𝑁 ) ) | |
| 22 | 21 | oveq2d | ⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) |
| 23 | 20 22 | eqeq12d | ⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) ↔ ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑗 = 𝑁 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑗 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑗 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) ) |
| 25 | nn0cn | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ ) | |
| 26 | 25 | addridd | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 0 ) = 𝑀 ) |
| 27 | 26 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 + 0 ) = 𝑀 ) |
| 28 | 27 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 0 ) ) = ( 𝐴 ↑ 𝑀 ) ) |
| 29 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) | |
| 30 | 29 | mulridd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) · 1 ) = ( 𝐴 ↑ 𝑀 ) ) |
| 31 | 28 30 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) · 1 ) ) |
| 32 | exp0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) | |
| 33 | 32 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 0 ) = 1 ) |
| 34 | 33 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) · 1 ) ) |
| 35 | 31 34 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 0 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 0 ) ) ) |
| 36 | oveq1 | ⊢ ( ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) → ( ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) · 𝐴 ) = ( ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) · 𝐴 ) ) | |
| 37 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 38 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 39 | addass | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 + 𝑘 ) + 1 ) = ( 𝑀 + ( 𝑘 + 1 ) ) ) | |
| 40 | 38 39 | mp3an3 | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑀 + 𝑘 ) + 1 ) = ( 𝑀 + ( 𝑘 + 1 ) ) ) |
| 41 | 25 37 40 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 + 𝑘 ) + 1 ) = ( 𝑀 + ( 𝑘 + 1 ) ) ) |
| 42 | 41 | adantll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 + 𝑘 ) + 1 ) = ( 𝑀 + ( 𝑘 + 1 ) ) ) |
| 43 | 42 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑀 + 𝑘 ) + 1 ) ) = ( 𝐴 ↑ ( 𝑀 + ( 𝑘 + 1 ) ) ) ) |
| 44 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) | |
| 45 | nn0addcl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 + 𝑘 ) ∈ ℕ0 ) | |
| 46 | 45 | adantll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 + 𝑘 ) ∈ ℕ0 ) |
| 47 | expp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 + 𝑘 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑀 + 𝑘 ) + 1 ) ) = ( ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) · 𝐴 ) ) | |
| 48 | 44 46 47 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑀 + 𝑘 ) + 1 ) ) = ( ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) · 𝐴 ) ) |
| 49 | 43 48 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) · 𝐴 ) ) |
| 50 | expp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) | |
| 51 | 50 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
| 52 | 51 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) ) |
| 53 | 29 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
| 54 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) | |
| 55 | 54 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 56 | 53 55 44 | mulassd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) · 𝐴 ) = ( ( 𝐴 ↑ 𝑀 ) · ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) ) |
| 57 | 52 56 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) = ( ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) · 𝐴 ) ) |
| 58 | 49 57 | eqeq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑀 + ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ↔ ( ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) · 𝐴 ) = ( ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) · 𝐴 ) ) ) |
| 59 | 36 58 | imbitrrid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) → ( 𝐴 ↑ ( 𝑀 + ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 60 | 59 | expcom | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) → ( 𝐴 ↑ ( 𝑀 + ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 61 | 60 | a2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑘 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑘 ) ) ) → ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + ( 𝑘 + 1 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 62 | 6 12 18 24 35 61 | nn0ind | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 63 | 62 | expdcom | ⊢ ( 𝐴 ∈ ℂ → ( 𝑀 ∈ ℕ0 → ( 𝑁 ∈ ℕ0 → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) ) |
| 64 | 63 | 3imp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) |