This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function maps the complex numbers to the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eff2 | ⊢ exp : ℂ ⟶ ( ℂ ∖ { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eff | ⊢ exp : ℂ ⟶ ℂ | |
| 2 | ffn | ⊢ ( exp : ℂ ⟶ ℂ → exp Fn ℂ ) | |
| 3 | 1 2 | ax-mp | ⊢ exp Fn ℂ |
| 4 | efcl | ⊢ ( 𝑥 ∈ ℂ → ( exp ‘ 𝑥 ) ∈ ℂ ) | |
| 5 | efne0 | ⊢ ( 𝑥 ∈ ℂ → ( exp ‘ 𝑥 ) ≠ 0 ) | |
| 6 | eldifsn | ⊢ ( ( exp ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( exp ‘ 𝑥 ) ∈ ℂ ∧ ( exp ‘ 𝑥 ) ≠ 0 ) ) | |
| 7 | 4 5 6 | sylanbrc | ⊢ ( 𝑥 ∈ ℂ → ( exp ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 8 | 7 | rgen | ⊢ ∀ 𝑥 ∈ ℂ ( exp ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) |
| 9 | ffnfv | ⊢ ( exp : ℂ ⟶ ( ℂ ∖ { 0 } ) ↔ ( exp Fn ℂ ∧ ∀ 𝑥 ∈ ℂ ( exp ‘ 𝑥 ) ∈ ( ℂ ∖ { 0 } ) ) ) | |
| 10 | 3 8 9 | mpbir2an | ⊢ exp : ℂ ⟶ ( ℂ ∖ { 0 } ) |