This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvfsumrlim . (Contributed by Mario Carneiro, 17-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsum.s | ⊢ 𝑆 = ( 𝑇 (,) +∞ ) | |
| dvfsum.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| dvfsum.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| dvfsum.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| dvfsum.md | ⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) | ||
| dvfsum.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | ||
| dvfsum.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | ||
| dvfsum.b1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | ||
| dvfsum.b2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | ||
| dvfsum.b3 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | ||
| dvfsum.c | ⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) | ||
| dvfsum.u | ⊢ ( 𝜑 → 𝑈 ∈ ℝ* ) | ||
| dvfsum.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) | ||
| dvfsum.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) | ||
| dvfsumlem1.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | ||
| dvfsumlem1.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) | ||
| dvfsumlem1.3 | ⊢ ( 𝜑 → 𝐷 ≤ 𝑋 ) | ||
| dvfsumlem1.4 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | ||
| dvfsumlem1.5 | ⊢ ( 𝜑 → 𝑌 ≤ 𝑈 ) | ||
| Assertion | dvfsumlem3 | ⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑌 ) ≤ ( 𝐻 ‘ 𝑋 ) ∧ ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsum.s | ⊢ 𝑆 = ( 𝑇 (,) +∞ ) | |
| 2 | dvfsum.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | dvfsum.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | dvfsum.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 5 | dvfsum.md | ⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) | |
| 6 | dvfsum.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | |
| 7 | dvfsum.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | |
| 8 | dvfsum.b1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | |
| 9 | dvfsum.b2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | |
| 10 | dvfsum.b3 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | |
| 11 | dvfsum.c | ⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) | |
| 12 | dvfsum.u | ⊢ ( 𝜑 → 𝑈 ∈ ℝ* ) | |
| 13 | dvfsum.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) | |
| 14 | dvfsum.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) | |
| 15 | dvfsumlem1.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | |
| 16 | dvfsumlem1.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) | |
| 17 | dvfsumlem1.3 | ⊢ ( 𝜑 → 𝐷 ≤ 𝑋 ) | |
| 18 | dvfsumlem1.4 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | |
| 19 | dvfsumlem1.5 | ⊢ ( 𝜑 → 𝑌 ≤ 𝑈 ) | |
| 20 | ioossre | ⊢ ( 𝑇 (,) +∞ ) ⊆ ℝ | |
| 21 | 1 20 | eqsstri | ⊢ 𝑆 ⊆ ℝ |
| 22 | 21 16 | sselid | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 23 | 21 15 | sselid | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 24 | reflcl | ⊢ ( 𝑋 ∈ ℝ → ( ⌊ ‘ 𝑋 ) ∈ ℝ ) | |
| 25 | peano2re | ⊢ ( ( ⌊ ‘ 𝑋 ) ∈ ℝ → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ) | |
| 26 | 23 24 25 | 3syl | ⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ) |
| 27 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑀 ∈ ℤ ) |
| 28 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝐷 ∈ ℝ ) |
| 29 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑀 ≤ ( 𝐷 + 1 ) ) |
| 30 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑇 ∈ ℝ ) |
| 31 | 7 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
| 32 | 8 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
| 33 | 9 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 34 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
| 35 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑈 ∈ ℝ* ) |
| 36 | 13 | 3adant1r | ⊢ ( ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) |
| 37 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑋 ∈ 𝑆 ) |
| 38 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑌 ∈ 𝑆 ) |
| 39 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝐷 ≤ 𝑋 ) |
| 40 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑋 ≤ 𝑌 ) |
| 41 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑌 ≤ 𝑈 ) |
| 42 | simpr | ⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) | |
| 43 | 1 2 27 28 29 30 31 32 33 34 11 35 36 14 37 38 39 40 41 42 | dvfsumlem2 | ⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( 𝐻 ‘ 𝑌 ) ≤ ( 𝐻 ‘ 𝑋 ) ∧ ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
| 44 | 21 | a1i | ⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
| 45 | 44 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ℝ ) |
| 46 | reflcl | ⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) | |
| 47 | 45 46 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
| 48 | 45 47 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) ∈ ℝ ) |
| 49 | 44 7 8 10 | dvmptrecl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
| 50 | 48 49 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) ∈ ℝ ) |
| 51 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) | |
| 52 | 9 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℝ ) |
| 53 | 52 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℝ ) |
| 54 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 55 | 54 2 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) → 𝑘 ∈ 𝑍 ) |
| 56 | 11 | eleq1d | ⊢ ( 𝑥 = 𝑘 → ( 𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ ) ) |
| 57 | 56 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℝ ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ ℝ ) |
| 58 | 53 55 57 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐶 ∈ ℝ ) |
| 59 | 51 58 | fsumrecl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 ∈ ℝ ) |
| 60 | 59 7 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ∈ ℝ ) |
| 61 | 50 60 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ∈ ℝ ) |
| 62 | 61 14 | fmptd | ⊢ ( 𝜑 → 𝐻 : 𝑆 ⟶ ℝ ) |
| 63 | 62 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝐻 : 𝑆 ⟶ ℝ ) |
| 64 | 16 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑌 ∈ 𝑆 ) |
| 65 | 63 64 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( 𝐻 ‘ 𝑌 ) ∈ ℝ ) |
| 66 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑌 ∈ ℝ ) |
| 67 | reflcl | ⊢ ( 𝑌 ∈ ℝ → ( ⌊ ‘ 𝑌 ) ∈ ℝ ) | |
| 68 | 66 67 | syl | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ∈ ℝ ) |
| 69 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑇 ∈ ℝ ) |
| 70 | 23 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑋 ∈ ℝ ) |
| 71 | 70 24 25 | 3syl | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ) |
| 72 | 15 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑇 (,) +∞ ) ) |
| 73 | 6 | rexrd | ⊢ ( 𝜑 → 𝑇 ∈ ℝ* ) |
| 74 | elioopnf | ⊢ ( 𝑇 ∈ ℝ* → ( 𝑋 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑋 ∈ ℝ ∧ 𝑇 < 𝑋 ) ) ) | |
| 75 | 73 74 | syl | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑋 ∈ ℝ ∧ 𝑇 < 𝑋 ) ) ) |
| 76 | 72 75 | mpbid | ⊢ ( 𝜑 → ( 𝑋 ∈ ℝ ∧ 𝑇 < 𝑋 ) ) |
| 77 | 76 | simprd | ⊢ ( 𝜑 → 𝑇 < 𝑋 ) |
| 78 | fllep1 | ⊢ ( 𝑋 ∈ ℝ → 𝑋 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) | |
| 79 | 23 78 | syl | ⊢ ( 𝜑 → 𝑋 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 80 | 6 23 26 77 79 | ltletrd | ⊢ ( 𝜑 → 𝑇 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 81 | 80 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑇 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 82 | simpr | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) | |
| 83 | 70 | flcld | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ 𝑋 ) ∈ ℤ ) |
| 84 | 83 | peano2zd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℤ ) |
| 85 | flge | ⊢ ( ( 𝑌 ∈ ℝ ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℤ ) → ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ↔ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ) ) | |
| 86 | 66 84 85 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ↔ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ) ) |
| 87 | 82 86 | mpbid | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ) |
| 88 | 69 71 68 81 87 | ltletrd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑇 < ( ⌊ ‘ 𝑌 ) ) |
| 89 | 73 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑇 ∈ ℝ* ) |
| 90 | elioopnf | ⊢ ( 𝑇 ∈ ℝ* → ( ( ⌊ ‘ 𝑌 ) ∈ ( 𝑇 (,) +∞ ) ↔ ( ( ⌊ ‘ 𝑌 ) ∈ ℝ ∧ 𝑇 < ( ⌊ ‘ 𝑌 ) ) ) ) | |
| 91 | 89 90 | syl | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑌 ) ∈ ( 𝑇 (,) +∞ ) ↔ ( ( ⌊ ‘ 𝑌 ) ∈ ℝ ∧ 𝑇 < ( ⌊ ‘ 𝑌 ) ) ) ) |
| 92 | 68 88 91 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ∈ ( 𝑇 (,) +∞ ) ) |
| 93 | 92 1 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ∈ 𝑆 ) |
| 94 | 63 93 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) ∈ ℝ ) |
| 95 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑋 ∈ 𝑆 ) |
| 96 | 63 95 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( 𝐻 ‘ 𝑋 ) ∈ ℝ ) |
| 97 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑀 ∈ ℤ ) |
| 98 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝐷 ∈ ℝ ) |
| 99 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑀 ≤ ( 𝐷 + 1 ) ) |
| 100 | 7 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
| 101 | 8 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
| 102 | 9 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 103 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
| 104 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑈 ∈ ℝ* ) |
| 105 | 13 | 3adant1r | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) |
| 106 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝐷 ≤ 𝑋 ) |
| 107 | 70 78 | syl | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑋 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 108 | 98 70 71 106 107 | letrd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝐷 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 109 | 98 71 68 108 87 | letrd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝐷 ≤ ( ⌊ ‘ 𝑌 ) ) |
| 110 | flle | ⊢ ( 𝑌 ∈ ℝ → ( ⌊ ‘ 𝑌 ) ≤ 𝑌 ) | |
| 111 | 66 110 | syl | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ≤ 𝑌 ) |
| 112 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑌 ≤ 𝑈 ) |
| 113 | fllep1 | ⊢ ( 𝑌 ∈ ℝ → 𝑌 ≤ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) | |
| 114 | 66 113 | syl | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑌 ≤ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) |
| 115 | flidm | ⊢ ( 𝑌 ∈ ℝ → ( ⌊ ‘ ( ⌊ ‘ 𝑌 ) ) = ( ⌊ ‘ 𝑌 ) ) | |
| 116 | 66 115 | syl | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ ( ⌊ ‘ 𝑌 ) ) = ( ⌊ ‘ 𝑌 ) ) |
| 117 | 116 | oveq1d | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ ( ⌊ ‘ 𝑌 ) ) + 1 ) = ( ( ⌊ ‘ 𝑌 ) + 1 ) ) |
| 118 | 114 117 | breqtrrd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑌 ≤ ( ( ⌊ ‘ ( ⌊ ‘ 𝑌 ) ) + 1 ) ) |
| 119 | 1 2 97 98 99 69 100 101 102 103 11 104 105 14 93 64 109 111 112 118 | dvfsumlem2 | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ 𝑌 ) ≤ ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) ∧ ( ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) − ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
| 120 | 119 | simpld | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( 𝐻 ‘ 𝑌 ) ≤ ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) ) |
| 121 | elioopnf | ⊢ ( 𝑇 ∈ ℝ* → ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ( 𝑇 (,) +∞ ) ↔ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ∧ 𝑇 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) ) | |
| 122 | 73 121 | syl | ⊢ ( 𝜑 → ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ( 𝑇 (,) +∞ ) ↔ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ∧ 𝑇 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) ) |
| 123 | 26 80 122 | mpbir2and | ⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ( 𝑇 (,) +∞ ) ) |
| 124 | 123 1 | eleqtrrdi | ⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ 𝑆 ) |
| 125 | 124 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ 𝑆 ) |
| 126 | 63 125 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ∈ ℝ ) |
| 127 | 66 | flcld | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ∈ ℤ ) |
| 128 | eluz2 | ⊢ ( ( ⌊ ‘ 𝑌 ) ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ↔ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℤ ∧ ( ⌊ ‘ 𝑌 ) ∈ ℤ ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ) ) | |
| 129 | 84 127 87 128 | syl3anbrc | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 130 | 63 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → 𝐻 : 𝑆 ⟶ ℝ ) |
| 131 | elfzelz | ⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → 𝑚 ∈ ℤ ) | |
| 132 | 131 | adantl | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑚 ∈ ℤ ) |
| 133 | 132 | zred | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑚 ∈ ℝ ) |
| 134 | 69 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑇 ∈ ℝ ) |
| 135 | 71 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ) |
| 136 | 80 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑇 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 137 | elfzle1 | ⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑚 ) | |
| 138 | 137 | adantl | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑚 ) |
| 139 | 134 135 133 136 138 | ltletrd | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑇 < 𝑚 ) |
| 140 | 73 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑇 ∈ ℝ* ) |
| 141 | elioopnf | ⊢ ( 𝑇 ∈ ℝ* → ( 𝑚 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑚 ∈ ℝ ∧ 𝑇 < 𝑚 ) ) ) | |
| 142 | 140 141 | syl | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → ( 𝑚 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑚 ∈ ℝ ∧ 𝑇 < 𝑚 ) ) ) |
| 143 | 133 139 142 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑚 ∈ ( 𝑇 (,) +∞ ) ) |
| 144 | 143 1 | eleqtrrdi | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑚 ∈ 𝑆 ) |
| 145 | 130 144 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → ( 𝐻 ‘ 𝑚 ) ∈ ℝ ) |
| 146 | 97 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑀 ∈ ℤ ) |
| 147 | 98 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝐷 ∈ ℝ ) |
| 148 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑀 ≤ ( 𝐷 + 1 ) ) |
| 149 | 69 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑇 ∈ ℝ ) |
| 150 | 100 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
| 151 | 101 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
| 152 | 102 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 153 | 103 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
| 154 | 104 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑈 ∈ ℝ* ) |
| 155 | 105 | 3adant1r | ⊢ ( ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) |
| 156 | elfzelz | ⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) → 𝑚 ∈ ℤ ) | |
| 157 | 156 | adantl | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑚 ∈ ℤ ) |
| 158 | 157 | zred | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑚 ∈ ℝ ) |
| 159 | 71 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ) |
| 160 | 80 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑇 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 161 | elfzle1 | ⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑚 ) | |
| 162 | 161 | adantl | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑚 ) |
| 163 | 149 159 158 160 162 | ltletrd | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑇 < 𝑚 ) |
| 164 | 149 | rexrd | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑇 ∈ ℝ* ) |
| 165 | 164 141 | syl | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝑚 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑚 ∈ ℝ ∧ 𝑇 < 𝑚 ) ) ) |
| 166 | 158 163 165 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑚 ∈ ( 𝑇 (,) +∞ ) ) |
| 167 | 166 1 | eleqtrrdi | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑚 ∈ 𝑆 ) |
| 168 | peano2re | ⊢ ( 𝑚 ∈ ℝ → ( 𝑚 + 1 ) ∈ ℝ ) | |
| 169 | 158 168 | syl | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝑚 + 1 ) ∈ ℝ ) |
| 170 | 158 | lep1d | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑚 ≤ ( 𝑚 + 1 ) ) |
| 171 | 149 158 169 163 170 | ltletrd | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑇 < ( 𝑚 + 1 ) ) |
| 172 | elioopnf | ⊢ ( 𝑇 ∈ ℝ* → ( ( 𝑚 + 1 ) ∈ ( 𝑇 (,) +∞ ) ↔ ( ( 𝑚 + 1 ) ∈ ℝ ∧ 𝑇 < ( 𝑚 + 1 ) ) ) ) | |
| 173 | 164 172 | syl | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ( 𝑚 + 1 ) ∈ ( 𝑇 (,) +∞ ) ↔ ( ( 𝑚 + 1 ) ∈ ℝ ∧ 𝑇 < ( 𝑚 + 1 ) ) ) ) |
| 174 | 169 171 173 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝑚 + 1 ) ∈ ( 𝑇 (,) +∞ ) ) |
| 175 | 174 1 | eleqtrrdi | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝑚 + 1 ) ∈ 𝑆 ) |
| 176 | 108 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝐷 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 177 | 147 159 158 176 162 | letrd | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝐷 ≤ 𝑚 ) |
| 178 | 169 | rexrd | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝑚 + 1 ) ∈ ℝ* ) |
| 179 | 68 | rexrd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ∈ ℝ* ) |
| 180 | 179 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ⌊ ‘ 𝑌 ) ∈ ℝ* ) |
| 181 | elfzle2 | ⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) → 𝑚 ≤ ( ( ⌊ ‘ 𝑌 ) − 1 ) ) | |
| 182 | 181 | adantl | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑚 ≤ ( ( ⌊ ‘ 𝑌 ) − 1 ) ) |
| 183 | 1red | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 1 ∈ ℝ ) | |
| 184 | 66 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑌 ∈ ℝ ) |
| 185 | 184 67 | syl | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ⌊ ‘ 𝑌 ) ∈ ℝ ) |
| 186 | leaddsub | ⊢ ( ( 𝑚 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ⌊ ‘ 𝑌 ) ∈ ℝ ) → ( ( 𝑚 + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ↔ 𝑚 ≤ ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) | |
| 187 | 158 183 185 186 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ( 𝑚 + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ↔ 𝑚 ≤ ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) |
| 188 | 182 187 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝑚 + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ) |
| 189 | 66 | rexrd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑌 ∈ ℝ* ) |
| 190 | 179 189 104 111 112 | xrletrd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ≤ 𝑈 ) |
| 191 | 190 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ⌊ ‘ 𝑌 ) ≤ 𝑈 ) |
| 192 | 178 180 154 188 191 | xrletrd | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝑚 + 1 ) ≤ 𝑈 ) |
| 193 | flid | ⊢ ( 𝑚 ∈ ℤ → ( ⌊ ‘ 𝑚 ) = 𝑚 ) | |
| 194 | 157 193 | syl | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ⌊ ‘ 𝑚 ) = 𝑚 ) |
| 195 | 194 | eqcomd | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑚 = ( ⌊ ‘ 𝑚 ) ) |
| 196 | 195 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝑚 + 1 ) = ( ( ⌊ ‘ 𝑚 ) + 1 ) ) |
| 197 | 169 196 | eqled | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝑚 + 1 ) ≤ ( ( ⌊ ‘ 𝑚 ) + 1 ) ) |
| 198 | 1 2 146 147 148 149 150 151 152 153 11 154 155 14 167 175 177 170 192 197 | dvfsumlem2 | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ( 𝐻 ‘ ( 𝑚 + 1 ) ) ≤ ( 𝐻 ‘ 𝑚 ) ∧ ( ( 𝐻 ‘ 𝑚 ) − ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ ( 𝑚 + 1 ) ) − ⦋ ( 𝑚 + 1 ) / 𝑥 ⦌ 𝐵 ) ) ) |
| 199 | 198 | simpld | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝐻 ‘ ( 𝑚 + 1 ) ) ≤ ( 𝐻 ‘ 𝑚 ) ) |
| 200 | 129 145 199 | monoord2 | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) ≤ ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
| 201 | 71 | rexrd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ* ) |
| 202 | 201 179 104 87 190 | xrletrd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑈 ) |
| 203 | 71 | leidd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
| 204 | 1 2 97 98 99 69 100 101 102 103 11 104 105 14 95 125 106 107 202 203 | dvfsumlem2 | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ≤ ( 𝐻 ‘ 𝑋 ) ∧ ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) − ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) ) |
| 205 | 204 | simpld | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ≤ ( 𝐻 ‘ 𝑋 ) ) |
| 206 | 94 126 96 200 205 | letrd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) ≤ ( 𝐻 ‘ 𝑋 ) ) |
| 207 | 65 94 96 120 206 | letrd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( 𝐻 ‘ 𝑌 ) ≤ ( 𝐻 ‘ 𝑋 ) ) |
| 208 | csbeq1 | ⊢ ( 𝑚 = 𝑋 → ⦋ 𝑚 / 𝑥 ⦌ 𝐵 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) | |
| 209 | 208 | eleq1d | ⊢ ( 𝑚 = 𝑋 → ( ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 210 | 49 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℝ ) |
| 211 | 210 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℝ ) |
| 212 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑚 / 𝑥 ⦌ 𝐵 | |
| 213 | 212 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ |
| 214 | csbeq1a | ⊢ ( 𝑥 = 𝑚 → 𝐵 = ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) | |
| 215 | 214 | eleq1d | ⊢ ( 𝑥 = 𝑚 → ( 𝐵 ∈ ℝ ↔ ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 216 | 213 215 | rspc | ⊢ ( 𝑚 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℝ → ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 217 | 211 216 | mpan9 | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ 𝑆 ) → ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 218 | 217 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ∀ 𝑚 ∈ 𝑆 ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 219 | 209 218 95 | rspcdva | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 220 | 96 219 | resubcld | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 221 | csbeq1 | ⊢ ( 𝑚 = ( ⌊ ‘ 𝑌 ) → ⦋ 𝑚 / 𝑥 ⦌ 𝐵 = ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) | |
| 222 | 221 | eleq1d | ⊢ ( 𝑚 = ( ⌊ ‘ 𝑌 ) → ( ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 223 | 222 218 93 | rspcdva | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 224 | 94 223 | resubcld | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) − ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 225 | csbeq1 | ⊢ ( 𝑚 = 𝑌 → ⦋ 𝑚 / 𝑥 ⦌ 𝐵 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) | |
| 226 | 225 | eleq1d | ⊢ ( 𝑚 = 𝑌 → ( ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 227 | 226 218 64 | rspcdva | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 228 | 65 227 | resubcld | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 229 | csbeq1 | ⊢ ( 𝑚 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ⦋ 𝑚 / 𝑥 ⦌ 𝐵 = ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) | |
| 230 | 229 | eleq1d | ⊢ ( 𝑚 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ( ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 231 | 230 218 125 | rspcdva | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 232 | 126 231 | resubcld | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) − ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 233 | 204 | simprd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) − ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
| 234 | fveq2 | ⊢ ( 𝑦 = 𝑚 → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 𝑚 ) ) | |
| 235 | csbeq1 | ⊢ ( 𝑦 = 𝑚 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) | |
| 236 | 234 235 | oveq12d | ⊢ ( 𝑦 = 𝑚 → ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) = ( ( 𝐻 ‘ 𝑚 ) − ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) ) |
| 237 | eqid | ⊢ ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) = ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) | |
| 238 | ovex | ⊢ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ V | |
| 239 | 236 237 238 | fvmpt3i | ⊢ ( 𝑚 ∈ V → ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ 𝑚 ) = ( ( 𝐻 ‘ 𝑚 ) − ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) ) |
| 240 | 239 | elv | ⊢ ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ 𝑚 ) = ( ( 𝐻 ‘ 𝑚 ) − ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) |
| 241 | 144 217 | syldan | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 242 | 145 241 | resubcld | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → ( ( 𝐻 ‘ 𝑚 ) − ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 243 | 240 242 | eqeltrid | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ 𝑚 ) ∈ ℝ ) |
| 244 | 198 | simprd | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ( 𝐻 ‘ 𝑚 ) − ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ ( 𝑚 + 1 ) ) − ⦋ ( 𝑚 + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
| 245 | ovex | ⊢ ( 𝑚 + 1 ) ∈ V | |
| 246 | fveq2 | ⊢ ( 𝑦 = ( 𝑚 + 1 ) → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) | |
| 247 | csbeq1 | ⊢ ( 𝑦 = ( 𝑚 + 1 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ ( 𝑚 + 1 ) / 𝑥 ⦌ 𝐵 ) | |
| 248 | 246 247 | oveq12d | ⊢ ( 𝑦 = ( 𝑚 + 1 ) → ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) = ( ( 𝐻 ‘ ( 𝑚 + 1 ) ) − ⦋ ( 𝑚 + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
| 249 | 248 237 238 | fvmpt3i | ⊢ ( ( 𝑚 + 1 ) ∈ V → ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ ( 𝑚 + 1 ) ) = ( ( 𝐻 ‘ ( 𝑚 + 1 ) ) − ⦋ ( 𝑚 + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
| 250 | 245 249 | ax-mp | ⊢ ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ ( 𝑚 + 1 ) ) = ( ( 𝐻 ‘ ( 𝑚 + 1 ) ) − ⦋ ( 𝑚 + 1 ) / 𝑥 ⦌ 𝐵 ) |
| 251 | 244 240 250 | 3brtr4g | ⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ 𝑚 ) ≤ ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ ( 𝑚 + 1 ) ) ) |
| 252 | 129 243 251 | monoord | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ≤ ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ ( ⌊ ‘ 𝑌 ) ) ) |
| 253 | ovex | ⊢ ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ V | |
| 254 | fveq2 | ⊢ ( 𝑦 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) | |
| 255 | csbeq1 | ⊢ ( 𝑦 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) | |
| 256 | 254 255 | oveq12d | ⊢ ( 𝑦 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) = ( ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) − ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
| 257 | 256 237 238 | fvmpt3i | ⊢ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ V → ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) = ( ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) − ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
| 258 | 253 257 | ax-mp | ⊢ ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) = ( ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) − ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) |
| 259 | fvex | ⊢ ( ⌊ ‘ 𝑌 ) ∈ V | |
| 260 | fveq2 | ⊢ ( 𝑦 = ( ⌊ ‘ 𝑌 ) → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) ) | |
| 261 | csbeq1 | ⊢ ( 𝑦 = ( ⌊ ‘ 𝑌 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) | |
| 262 | 260 261 | oveq12d | ⊢ ( 𝑦 = ( ⌊ ‘ 𝑌 ) → ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) = ( ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) − ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) |
| 263 | 262 237 238 | fvmpt3i | ⊢ ( ( ⌊ ‘ 𝑌 ) ∈ V → ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ ( ⌊ ‘ 𝑌 ) ) = ( ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) − ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) |
| 264 | 259 263 | ax-mp | ⊢ ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ ( ⌊ ‘ 𝑌 ) ) = ( ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) − ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) |
| 265 | 252 258 264 | 3brtr3g | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) − ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) − ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) |
| 266 | 220 232 224 233 265 | letrd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) − ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) |
| 267 | 119 | simprd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) − ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 268 | 220 224 228 266 267 | letrd | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 269 | 207 268 | jca | ⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ 𝑌 ) ≤ ( 𝐻 ‘ 𝑋 ) ∧ ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
| 270 | 22 26 43 269 | lecasei | ⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑌 ) ≤ ( 𝐻 ‘ 𝑋 ) ∧ ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |