This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005) (Revised by Mario Carneiro, 9-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | monoord.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| monoord.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | ||
| monoord.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | ||
| Assertion | monoord | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | monoord.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | monoord.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 3 | monoord.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | |
| 4 | eluzfz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 6 | eleq1 | ⊢ ( 𝑥 = 𝑀 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 7 | fveq2 | ⊢ ( 𝑥 = 𝑀 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 8 | 7 | breq2d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑀 ) ) ) |
| 9 | 6 8 | imbi12d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑀 ) ) ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑀 ) ) ) ) ) |
| 11 | eleq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 12 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 13 | 12 | breq2d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑛 ) ) ) |
| 14 | 11 13 | imbi12d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 16 | eleq1 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 17 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 18 | 17 | breq2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 19 | 16 18 | imbi12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 21 | eleq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) ) | |
| 22 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑁 ) ) | |
| 23 | 22 | breq2d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑁 ) ) ) |
| 24 | 21 23 | imbi12d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 25 | 24 | imbi2d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑁 ) ) ) ) ) |
| 26 | fveq2 | ⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 27 | 26 | eleq1d | ⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) ) |
| 28 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 29 | eluzfz1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 30 | 1 29 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 31 | 27 28 30 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) |
| 32 | 31 | leidd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑀 ) ) |
| 33 | 32 | a1d | ⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑀 ) ) ) |
| 34 | peano2fzr | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 35 | 34 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
| 36 | 35 | expr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 37 | 36 | imim1d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑛 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 38 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 39 | fvoveq1 | ⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 40 | 38 39 | breq12d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 41 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 42 | 41 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 43 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 44 | eluzelz | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑛 ∈ ℤ ) | |
| 45 | 43 44 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ℤ ) |
| 46 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) | |
| 47 | elfzuz3 | ⊢ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) | |
| 48 | 46 47 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
| 49 | eluzp1m1 | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) | |
| 50 | 45 48 49 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 51 | elfzuzb | ⊢ ( 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ) | |
| 52 | 43 50 51 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 53 | 40 42 52 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 54 | 31 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) |
| 55 | 38 | eleq1d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) ) |
| 56 | 28 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 57 | 55 56 35 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 58 | fveq2 | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 59 | 58 | eleq1d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) ) |
| 60 | 59 56 46 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 61 | letr | ⊢ ( ( ( 𝐹 ‘ 𝑀 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑛 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 62 | 54 57 60 61 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 63 | 53 62 | mpan2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑛 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 64 | 37 63 | animpimp2impd | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 65 | 10 15 20 25 33 64 | uzind4i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 66 | 1 65 | mpcom | ⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑁 ) ) ) |
| 67 | 5 66 | mpd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑁 ) ) |