This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvfsumrlim . (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsum.s | ⊢ 𝑆 = ( 𝑇 (,) +∞ ) | |
| dvfsum.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| dvfsum.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| dvfsum.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| dvfsum.md | ⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) | ||
| dvfsum.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | ||
| dvfsum.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | ||
| dvfsum.b1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | ||
| dvfsum.b2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | ||
| dvfsum.b3 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | ||
| dvfsum.c | ⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) | ||
| dvfsum.u | ⊢ ( 𝜑 → 𝑈 ∈ ℝ* ) | ||
| dvfsum.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) | ||
| dvfsumlem4.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) | ||
| dvfsumlem4.0 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑈 ) ) → 0 ≤ 𝐵 ) | ||
| dvfsumlem4.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | ||
| dvfsumlem4.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) | ||
| dvfsumlem4.3 | ⊢ ( 𝜑 → 𝐷 ≤ 𝑋 ) | ||
| dvfsumlem4.4 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | ||
| dvfsumlem4.5 | ⊢ ( 𝜑 → 𝑌 ≤ 𝑈 ) | ||
| Assertion | dvfsumlem4 | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsum.s | ⊢ 𝑆 = ( 𝑇 (,) +∞ ) | |
| 2 | dvfsum.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | dvfsum.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | dvfsum.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 5 | dvfsum.md | ⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) | |
| 6 | dvfsum.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | |
| 7 | dvfsum.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | |
| 8 | dvfsum.b1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | |
| 9 | dvfsum.b2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | |
| 10 | dvfsum.b3 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | |
| 11 | dvfsum.c | ⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) | |
| 12 | dvfsum.u | ⊢ ( 𝜑 → 𝑈 ∈ ℝ* ) | |
| 13 | dvfsum.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) | |
| 14 | dvfsumlem4.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) | |
| 15 | dvfsumlem4.0 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑈 ) ) → 0 ≤ 𝐵 ) | |
| 16 | dvfsumlem4.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | |
| 17 | dvfsumlem4.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) | |
| 18 | dvfsumlem4.3 | ⊢ ( 𝜑 → 𝐷 ≤ 𝑋 ) | |
| 19 | dvfsumlem4.4 | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | |
| 20 | dvfsumlem4.5 | ⊢ ( 𝜑 → 𝑌 ≤ 𝑈 ) | |
| 21 | fzfid | ⊢ ( 𝜑 → ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) ∈ Fin ) | |
| 22 | 9 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℝ ) |
| 23 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 24 | 23 2 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) → 𝑘 ∈ 𝑍 ) |
| 25 | 11 | eleq1d | ⊢ ( 𝑥 = 𝑘 → ( 𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ ) ) |
| 26 | 25 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℝ ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ ℝ ) |
| 27 | 22 24 26 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) ) → 𝐶 ∈ ℝ ) |
| 28 | 21 27 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 ∈ ℝ ) |
| 29 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℝ ) |
| 30 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑌 / 𝑥 ⦌ 𝐴 | |
| 31 | 30 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℝ |
| 32 | csbeq1a | ⊢ ( 𝑥 = 𝑌 → 𝐴 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) | |
| 33 | 32 | eleq1d | ⊢ ( 𝑥 = 𝑌 → ( 𝐴 ∈ ℝ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
| 34 | 31 33 | rspc | ⊢ ( 𝑌 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℝ → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
| 35 | 17 29 34 | sylc | ⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 36 | 28 35 | resubcld | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) |
| 37 | nfcv | ⊢ Ⅎ 𝑥 𝑌 | |
| 38 | nfcv | ⊢ Ⅎ 𝑥 Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 | |
| 39 | nfcv | ⊢ Ⅎ 𝑥 − | |
| 40 | 38 39 30 | nfov | ⊢ Ⅎ 𝑥 ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) |
| 41 | fveq2 | ⊢ ( 𝑥 = 𝑌 → ( ⌊ ‘ 𝑥 ) = ( ⌊ ‘ 𝑌 ) ) | |
| 42 | 41 | oveq2d | ⊢ ( 𝑥 = 𝑌 → ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) = ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) ) |
| 43 | 42 | sumeq1d | ⊢ ( 𝑥 = 𝑌 → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 = Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 ) |
| 44 | 43 32 | oveq12d | ⊢ ( 𝑥 = 𝑌 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 45 | 37 40 44 14 | fvmptf | ⊢ ( ( 𝑌 ∈ 𝑆 ∧ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) → ( 𝐺 ‘ 𝑌 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 46 | 17 36 45 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 47 | fzfid | ⊢ ( 𝜑 → ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ∈ Fin ) | |
| 48 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 49 | 48 2 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) → 𝑘 ∈ 𝑍 ) |
| 50 | 22 49 26 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝐶 ∈ ℝ ) |
| 51 | 47 50 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ∈ ℝ ) |
| 52 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑋 / 𝑥 ⦌ 𝐴 | |
| 53 | 52 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ∈ ℝ |
| 54 | csbeq1a | ⊢ ( 𝑥 = 𝑋 → 𝐴 = ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) | |
| 55 | 54 | eleq1d | ⊢ ( 𝑥 = 𝑋 → ( 𝐴 ∈ ℝ ↔ ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
| 56 | 53 55 | rspc | ⊢ ( 𝑋 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℝ → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
| 57 | 16 29 56 | sylc | ⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 58 | 51 57 | resubcld | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) |
| 59 | nfcv | ⊢ Ⅎ 𝑥 𝑋 | |
| 60 | nfcv | ⊢ Ⅎ 𝑥 Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 | |
| 61 | 60 39 52 | nfov | ⊢ Ⅎ 𝑥 ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) |
| 62 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( ⌊ ‘ 𝑥 ) = ( ⌊ ‘ 𝑋 ) ) | |
| 63 | 62 | oveq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) = ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ) |
| 64 | 63 | sumeq1d | ⊢ ( 𝑥 = 𝑋 → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 = Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) |
| 65 | 64 54 | oveq12d | ⊢ ( 𝑥 = 𝑋 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 66 | 59 61 65 14 | fvmptf | ⊢ ( ( 𝑋 ∈ 𝑆 ∧ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) → ( 𝐺 ‘ 𝑋 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 67 | 16 58 66 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 68 | 46 67 | oveq12d | ⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) = ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) − ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) ) |
| 69 | 68 | fveq2d | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) ) = ( abs ‘ ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) − ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) ) ) |
| 70 | ioossre | ⊢ ( 𝑇 (,) +∞ ) ⊆ ℝ | |
| 71 | 1 70 | eqsstri | ⊢ 𝑆 ⊆ ℝ |
| 72 | 71 | a1i | ⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
| 73 | 72 7 8 10 | dvmptrecl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
| 74 | 73 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℝ ) |
| 75 | nfv | ⊢ Ⅎ 𝑚 𝐵 ∈ ℝ | |
| 76 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑚 / 𝑥 ⦌ 𝐵 | |
| 77 | 76 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ |
| 78 | csbeq1a | ⊢ ( 𝑥 = 𝑚 → 𝐵 = ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) | |
| 79 | 78 | eleq1d | ⊢ ( 𝑥 = 𝑚 → ( 𝐵 ∈ ℝ ↔ ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 80 | 75 77 79 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℝ ↔ ∀ 𝑚 ∈ 𝑆 ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 81 | 74 80 | sylib | ⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑆 ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 82 | csbeq1 | ⊢ ( 𝑚 = 𝑋 → ⦋ 𝑚 / 𝑥 ⦌ 𝐵 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) | |
| 83 | 82 | eleq1d | ⊢ ( 𝑚 = 𝑋 → ( ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 84 | 83 | rspcv | ⊢ ( 𝑋 ∈ 𝑆 → ( ∀ 𝑚 ∈ 𝑆 ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 85 | 16 81 84 | sylc | ⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 86 | 58 85 | resubcld | ⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 87 | 71 16 | sselid | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 88 | reflcl | ⊢ ( 𝑋 ∈ ℝ → ( ⌊ ‘ 𝑋 ) ∈ ℝ ) | |
| 89 | 87 88 | syl | ⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ∈ ℝ ) |
| 90 | 87 89 | resubcld | ⊢ ( 𝜑 → ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ∈ ℝ ) |
| 91 | 90 85 | remulcld | ⊢ ( 𝜑 → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 92 | 91 58 | readdcld | ⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) ∈ ℝ ) |
| 93 | 92 85 | resubcld | ⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 94 | fracge0 | ⊢ ( 𝑋 ∈ ℝ → 0 ≤ ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ) | |
| 95 | 87 94 | syl | ⊢ ( 𝜑 → 0 ≤ ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ) |
| 96 | 87 | rexrd | ⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
| 97 | 71 17 | sselid | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 98 | 97 | rexrd | ⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) |
| 99 | 96 98 12 19 20 | xrletrd | ⊢ ( 𝜑 → 𝑋 ≤ 𝑈 ) |
| 100 | 16 18 99 | 3jca | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑈 ) ) |
| 101 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑈 ) ) → 𝑋 ∈ 𝑆 ) | |
| 102 | nfv | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑈 ) ) | |
| 103 | nfcv | ⊢ Ⅎ 𝑥 0 | |
| 104 | nfcv | ⊢ Ⅎ 𝑥 ≤ | |
| 105 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑋 / 𝑥 ⦌ 𝐵 | |
| 106 | 103 104 105 | nfbr | ⊢ Ⅎ 𝑥 0 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 |
| 107 | 102 106 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑈 ) ) → 0 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 108 | eleq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝑆 ↔ 𝑋 ∈ 𝑆 ) ) | |
| 109 | breq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐷 ≤ 𝑥 ↔ 𝐷 ≤ 𝑋 ) ) | |
| 110 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑈 ↔ 𝑋 ≤ 𝑈 ) ) | |
| 111 | 108 109 110 | 3anbi123d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑈 ) ↔ ( 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑈 ) ) ) |
| 112 | 111 | anbi2d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑈 ) ) ↔ ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑈 ) ) ) ) |
| 113 | csbeq1a | ⊢ ( 𝑥 = 𝑋 → 𝐵 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) | |
| 114 | 113 | breq2d | ⊢ ( 𝑥 = 𝑋 → ( 0 ≤ 𝐵 ↔ 0 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 115 | 112 114 | imbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑈 ) ) → 0 ≤ 𝐵 ) ↔ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑈 ) ) → 0 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) |
| 116 | 107 115 15 | vtoclg1f | ⊢ ( 𝑋 ∈ 𝑆 → ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑈 ) ) → 0 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 117 | 101 116 | mpcom | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝐷 ≤ 𝑋 ∧ 𝑋 ≤ 𝑈 ) ) → 0 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 118 | 100 117 | mpdan | ⊢ ( 𝜑 → 0 ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 119 | 90 85 95 118 | mulge0d | ⊢ ( 𝜑 → 0 ≤ ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 120 | 58 91 | addge02d | ⊢ ( 𝜑 → ( 0 ≤ ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ↔ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) ) ) |
| 121 | 119 120 | mpbid | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) ) |
| 122 | 58 92 85 121 | lesub1dd | ⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 123 | reflcl | ⊢ ( 𝑌 ∈ ℝ → ( ⌊ ‘ 𝑌 ) ∈ ℝ ) | |
| 124 | 97 123 | syl | ⊢ ( 𝜑 → ( ⌊ ‘ 𝑌 ) ∈ ℝ ) |
| 125 | 97 124 | resubcld | ⊢ ( 𝜑 → ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) ∈ ℝ ) |
| 126 | csbeq1 | ⊢ ( 𝑚 = 𝑌 → ⦋ 𝑚 / 𝑥 ⦌ 𝐵 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) | |
| 127 | 126 | eleq1d | ⊢ ( 𝑚 = 𝑌 → ( ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 128 | 127 | rspcv | ⊢ ( 𝑌 ∈ 𝑆 → ( ∀ 𝑚 ∈ 𝑆 ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 129 | 17 81 128 | sylc | ⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 130 | 125 129 | remulcld | ⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 131 | 130 36 | readdcld | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ∈ ℝ ) |
| 132 | 131 129 | resubcld | ⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
| 133 | eqid | ⊢ ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) | |
| 134 | 1 2 3 4 5 6 7 8 9 10 11 12 13 133 16 17 18 19 20 | dvfsumlem3 | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) ‘ 𝑌 ) ≤ ( ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) ‘ 𝑋 ) ∧ ( ( ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
| 135 | 134 | simprd | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 136 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) | |
| 137 | nfcv | ⊢ Ⅎ 𝑥 · | |
| 138 | 136 137 105 | nfov | ⊢ Ⅎ 𝑥 ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 139 | nfcv | ⊢ Ⅎ 𝑥 + | |
| 140 | 138 139 61 | nfov | ⊢ Ⅎ 𝑥 ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) |
| 141 | id | ⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) | |
| 142 | 141 62 | oveq12d | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) = ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ) |
| 143 | 142 113 | oveq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) = ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 144 | 143 65 | oveq12d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) = ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) ) |
| 145 | 59 140 144 133 | fvmptf | ⊢ ( ( 𝑋 ∈ 𝑆 ∧ ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) ∈ ℝ ) → ( ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) ‘ 𝑋 ) = ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) ) |
| 146 | 16 92 145 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) ‘ 𝑋 ) = ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) ) |
| 147 | 146 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 148 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) | |
| 149 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑌 / 𝑥 ⦌ 𝐵 | |
| 150 | 148 137 149 | nfov | ⊢ Ⅎ 𝑥 ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 151 | 150 139 40 | nfov | ⊢ Ⅎ 𝑥 ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 152 | id | ⊢ ( 𝑥 = 𝑌 → 𝑥 = 𝑌 ) | |
| 153 | 152 41 | oveq12d | ⊢ ( 𝑥 = 𝑌 → ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) = ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) ) |
| 154 | csbeq1a | ⊢ ( 𝑥 = 𝑌 → 𝐵 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) | |
| 155 | 153 154 | oveq12d | ⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) = ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 156 | 155 44 | oveq12d | ⊢ ( 𝑥 = 𝑌 → ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 157 | 37 151 156 133 | fvmptf | ⊢ ( ( 𝑌 ∈ 𝑆 ∧ ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ∈ ℝ ) → ( ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) ‘ 𝑌 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 158 | 17 131 157 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) ‘ 𝑌 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 159 | 158 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 160 | 135 147 159 | 3brtr3d | ⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 161 | 36 | recnd | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ∈ ℂ ) |
| 162 | 129 | recnd | ⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 163 | 130 | recnd | ⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
| 164 | 161 162 163 | subsub3d | ⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) − ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 − ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) = ( ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 165 | 161 163 | addcomd | ⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 166 | 165 | oveq1d | ⊢ ( 𝜑 → ( ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 167 | 164 166 | eqtrd | ⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) − ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 − ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) = ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 168 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 169 | 4 87 97 18 19 | letrd | ⊢ ( 𝜑 → 𝐷 ≤ 𝑌 ) |
| 170 | 17 169 20 | 3jca | ⊢ ( 𝜑 → ( 𝑌 ∈ 𝑆 ∧ 𝐷 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) |
| 171 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝑆 ∧ 𝐷 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) → 𝑌 ∈ 𝑆 ) | |
| 172 | nfv | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝑌 ∈ 𝑆 ∧ 𝐷 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) | |
| 173 | 103 104 149 | nfbr | ⊢ Ⅎ 𝑥 0 ≤ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 |
| 174 | 172 173 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ ( 𝑌 ∈ 𝑆 ∧ 𝐷 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) → 0 ≤ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 175 | eleq1 | ⊢ ( 𝑥 = 𝑌 → ( 𝑥 ∈ 𝑆 ↔ 𝑌 ∈ 𝑆 ) ) | |
| 176 | breq2 | ⊢ ( 𝑥 = 𝑌 → ( 𝐷 ≤ 𝑥 ↔ 𝐷 ≤ 𝑌 ) ) | |
| 177 | breq1 | ⊢ ( 𝑥 = 𝑌 → ( 𝑥 ≤ 𝑈 ↔ 𝑌 ≤ 𝑈 ) ) | |
| 178 | 175 176 177 | 3anbi123d | ⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑈 ) ↔ ( 𝑌 ∈ 𝑆 ∧ 𝐷 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) ) |
| 179 | 178 | anbi2d | ⊢ ( 𝑥 = 𝑌 → ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑈 ) ) ↔ ( 𝜑 ∧ ( 𝑌 ∈ 𝑆 ∧ 𝐷 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) ) ) |
| 180 | 154 | breq2d | ⊢ ( 𝑥 = 𝑌 → ( 0 ≤ 𝐵 ↔ 0 ≤ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 181 | 179 180 | imbi12d | ⊢ ( 𝑥 = 𝑌 → ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑈 ) ) → 0 ≤ 𝐵 ) ↔ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝑆 ∧ 𝐷 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) → 0 ≤ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
| 182 | 174 181 15 | vtoclg1f | ⊢ ( 𝑌 ∈ 𝑆 → ( ( 𝜑 ∧ ( 𝑌 ∈ 𝑆 ∧ 𝐷 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) → 0 ≤ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 183 | 171 182 | mpcom | ⊢ ( ( 𝜑 ∧ ( 𝑌 ∈ 𝑆 ∧ 𝐷 ≤ 𝑌 ∧ 𝑌 ≤ 𝑈 ) ) → 0 ≤ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 184 | 170 183 | mpdan | ⊢ ( 𝜑 → 0 ≤ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 185 | fracle1 | ⊢ ( 𝑌 ∈ ℝ → ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) ≤ 1 ) | |
| 186 | 97 185 | syl | ⊢ ( 𝜑 → ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) ≤ 1 ) |
| 187 | 125 168 129 184 186 | lemul1ad | ⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ≤ ( 1 · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 188 | 162 | mullidd | ⊢ ( 𝜑 → ( 1 · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 189 | 187 188 | breqtrd | ⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ≤ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
| 190 | 129 130 | subge0d | ⊢ ( 𝜑 → ( 0 ≤ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 − ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ↔ ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ≤ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 191 | 189 190 | mpbird | ⊢ ( 𝜑 → 0 ≤ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 − ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
| 192 | 129 130 | resubcld | ⊢ ( 𝜑 → ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 − ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ∈ ℝ ) |
| 193 | 36 192 | subge02d | ⊢ ( 𝜑 → ( 0 ≤ ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 − ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ↔ ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) − ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 − ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) ≤ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 194 | 191 193 | mpbid | ⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) − ( ⦋ 𝑌 / 𝑥 ⦌ 𝐵 − ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) ≤ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 195 | 167 194 | eqbrtrrd | ⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ≤ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 196 | 93 132 36 160 195 | letrd | ⊢ ( 𝜑 → ( ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 197 | 86 93 36 122 196 | letrd | ⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
| 198 | 85 58 | readdcld | ⊢ ( 𝜑 → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) ∈ ℝ ) |
| 199 | fracge0 | ⊢ ( 𝑌 ∈ ℝ → 0 ≤ ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) ) | |
| 200 | 97 199 | syl | ⊢ ( 𝜑 → 0 ≤ ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) ) |
| 201 | 125 129 200 184 | mulge0d | ⊢ ( 𝜑 → 0 ≤ ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
| 202 | 36 130 | addge02d | ⊢ ( 𝜑 → ( 0 ≤ ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ↔ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) ) |
| 203 | 201 202 | mpbid | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
| 204 | 134 | simpld | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) ‘ 𝑌 ) ≤ ( ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) ‘ 𝑋 ) ) |
| 205 | 204 158 146 | 3brtr3d | ⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ≤ ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) ) |
| 206 | 36 131 92 203 205 | letrd | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ≤ ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) ) |
| 207 | fracle1 | ⊢ ( 𝑋 ∈ ℝ → ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ≤ 1 ) | |
| 208 | 87 207 | syl | ⊢ ( 𝜑 → ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) ≤ 1 ) |
| 209 | 90 168 85 118 208 | lemul1ad | ⊢ ( 𝜑 → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( 1 · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 210 | 85 | recnd | ⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 211 | 210 | mullidd | ⊢ ( 𝜑 → ( 1 · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 212 | 209 211 | breqtrd | ⊢ ( 𝜑 → ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 213 | 91 85 58 212 | leadd1dd | ⊢ ( 𝜑 → ( ( ( 𝑋 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) ≤ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) ) |
| 214 | 36 92 198 206 213 | letrd | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ≤ ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) ) |
| 215 | 58 | recnd | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ∈ ℂ ) |
| 216 | 210 215 | addcomd | ⊢ ( 𝜑 → ( ⦋ 𝑋 / 𝑥 ⦌ 𝐵 + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) = ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) + ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 217 | 214 216 | breqtrd | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ≤ ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) + ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) |
| 218 | 36 58 85 | absdifled | ⊢ ( 𝜑 → ( ( abs ‘ ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) − ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ↔ ( ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ∧ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ≤ ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) + ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ) ) ) |
| 219 | 197 217 218 | mpbir2and | ⊢ ( 𝜑 → ( abs ‘ ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) − ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑋 / 𝑥 ⦌ 𝐴 ) ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 220 | 69 219 | eqbrtrd | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝐺 ‘ 𝑌 ) − ( 𝐺 ‘ 𝑋 ) ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |