This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function on a closed interval with nonzero derivative is either monotone increasing or monotone decreasing. (Contributed by Mario Carneiro, 19-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvne0.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| dvne0.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| dvne0.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | ||
| dvne0.d | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | ||
| dvne0.z | ⊢ ( 𝜑 → ¬ 0 ∈ ran ( ℝ D 𝐹 ) ) | ||
| Assertion | dvne0 | ⊢ ( 𝜑 → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvne0.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | dvne0.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | dvne0.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 4 | dvne0.d | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) | |
| 5 | dvne0.z | ⊢ ( 𝜑 → ¬ 0 ∈ ran ( ℝ D 𝐹 ) ) | |
| 6 | eleq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ∈ ran ( ℝ D 𝐹 ) ↔ 0 ∈ ran ( ℝ D 𝐹 ) ) ) | |
| 7 | 6 | notbid | ⊢ ( 𝑥 = 0 → ( ¬ 𝑥 ∈ ran ( ℝ D 𝐹 ) ↔ ¬ 0 ∈ ran ( ℝ D 𝐹 ) ) ) |
| 8 | 5 7 | syl5ibrcom | ⊢ ( 𝜑 → ( 𝑥 = 0 → ¬ 𝑥 ∈ ran ( ℝ D 𝐹 ) ) ) |
| 9 | 8 | necon2ad | ⊢ ( 𝜑 → ( 𝑥 ∈ ran ( ℝ D 𝐹 ) → 𝑥 ≠ 0 ) ) |
| 10 | 9 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran ( ℝ D 𝐹 ) ) → 𝑥 ≠ 0 ) |
| 11 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 13 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 14 | 1 2 13 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 15 | dvfre | ⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) | |
| 16 | 12 14 15 | syl2anc | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
| 17 | 16 | frnd | ⊢ ( 𝜑 → ran ( ℝ D 𝐹 ) ⊆ ℝ ) |
| 18 | 17 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran ( ℝ D 𝐹 ) ) → 𝑥 ∈ ℝ ) |
| 19 | 0re | ⊢ 0 ∈ ℝ | |
| 20 | lttri2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝑥 ≠ 0 ↔ ( 𝑥 < 0 ∨ 0 < 𝑥 ) ) ) | |
| 21 | 18 19 20 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran ( ℝ D 𝐹 ) ) → ( 𝑥 ≠ 0 ↔ ( 𝑥 < 0 ∨ 0 < 𝑥 ) ) ) |
| 22 | 0xr | ⊢ 0 ∈ ℝ* | |
| 23 | elioomnf | ⊢ ( 0 ∈ ℝ* → ( 𝑥 ∈ ( -∞ (,) 0 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑥 < 0 ) ) ) | |
| 24 | 22 23 | ax-mp | ⊢ ( 𝑥 ∈ ( -∞ (,) 0 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑥 < 0 ) ) |
| 25 | 24 | baib | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ( -∞ (,) 0 ) ↔ 𝑥 < 0 ) ) |
| 26 | elrp | ⊢ ( 𝑥 ∈ ℝ+ ↔ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) | |
| 27 | 26 | baib | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ℝ+ ↔ 0 < 𝑥 ) ) |
| 28 | 25 27 | orbi12d | ⊢ ( 𝑥 ∈ ℝ → ( ( 𝑥 ∈ ( -∞ (,) 0 ) ∨ 𝑥 ∈ ℝ+ ) ↔ ( 𝑥 < 0 ∨ 0 < 𝑥 ) ) ) |
| 29 | 18 28 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran ( ℝ D 𝐹 ) ) → ( ( 𝑥 ∈ ( -∞ (,) 0 ) ∨ 𝑥 ∈ ℝ+ ) ↔ ( 𝑥 < 0 ∨ 0 < 𝑥 ) ) ) |
| 30 | 21 29 | bitr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran ( ℝ D 𝐹 ) ) → ( 𝑥 ≠ 0 ↔ ( 𝑥 ∈ ( -∞ (,) 0 ) ∨ 𝑥 ∈ ℝ+ ) ) ) |
| 31 | 10 30 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran ( ℝ D 𝐹 ) ) → ( 𝑥 ∈ ( -∞ (,) 0 ) ∨ 𝑥 ∈ ℝ+ ) ) |
| 32 | elun | ⊢ ( 𝑥 ∈ ( ( -∞ (,) 0 ) ∪ ℝ+ ) ↔ ( 𝑥 ∈ ( -∞ (,) 0 ) ∨ 𝑥 ∈ ℝ+ ) ) | |
| 33 | 31 32 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran ( ℝ D 𝐹 ) ) → 𝑥 ∈ ( ( -∞ (,) 0 ) ∪ ℝ+ ) ) |
| 34 | 33 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ran ( ℝ D 𝐹 ) → 𝑥 ∈ ( ( -∞ (,) 0 ) ∪ ℝ+ ) ) ) |
| 35 | 34 | ssrdv | ⊢ ( 𝜑 → ran ( ℝ D 𝐹 ) ⊆ ( ( -∞ (,) 0 ) ∪ ℝ+ ) ) |
| 36 | disjssun | ⊢ ( ( ran ( ℝ D 𝐹 ) ∩ ( -∞ (,) 0 ) ) = ∅ → ( ran ( ℝ D 𝐹 ) ⊆ ( ( -∞ (,) 0 ) ∪ ℝ+ ) ↔ ran ( ℝ D 𝐹 ) ⊆ ℝ+ ) ) | |
| 37 | 35 36 | syl5ibcom | ⊢ ( 𝜑 → ( ( ran ( ℝ D 𝐹 ) ∩ ( -∞ (,) 0 ) ) = ∅ → ran ( ℝ D 𝐹 ) ⊆ ℝ+ ) ) |
| 38 | 37 | imp | ⊢ ( ( 𝜑 ∧ ( ran ( ℝ D 𝐹 ) ∩ ( -∞ (,) 0 ) ) = ∅ ) → ran ( ℝ D 𝐹 ) ⊆ ℝ+ ) |
| 39 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ran ( ℝ D 𝐹 ) ⊆ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 40 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ran ( ℝ D 𝐹 ) ⊆ ℝ+ ) → 𝐵 ∈ ℝ ) |
| 41 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ran ( ℝ D 𝐹 ) ⊆ ℝ+ ) → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 42 | 4 | feq2d | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
| 43 | 16 42 | mpbid | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 44 | 43 | ffnd | ⊢ ( 𝜑 → ( ℝ D 𝐹 ) Fn ( 𝐴 (,) 𝐵 ) ) |
| 45 | 44 | anim1i | ⊢ ( ( 𝜑 ∧ ran ( ℝ D 𝐹 ) ⊆ ℝ+ ) → ( ( ℝ D 𝐹 ) Fn ( 𝐴 (,) 𝐵 ) ∧ ran ( ℝ D 𝐹 ) ⊆ ℝ+ ) ) |
| 46 | df-f | ⊢ ( ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ+ ↔ ( ( ℝ D 𝐹 ) Fn ( 𝐴 (,) 𝐵 ) ∧ ran ( ℝ D 𝐹 ) ⊆ ℝ+ ) ) | |
| 47 | 45 46 | sylibr | ⊢ ( ( 𝜑 ∧ ran ( ℝ D 𝐹 ) ⊆ ℝ+ ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ+ ) |
| 48 | 39 40 41 47 | dvgt0 | ⊢ ( ( 𝜑 ∧ ran ( ℝ D 𝐹 ) ⊆ ℝ+ ) → 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) |
| 49 | 48 | orcd | ⊢ ( ( 𝜑 ∧ ran ( ℝ D 𝐹 ) ⊆ ℝ+ ) → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) |
| 50 | 38 49 | syldan | ⊢ ( ( 𝜑 ∧ ( ran ( ℝ D 𝐹 ) ∩ ( -∞ (,) 0 ) ) = ∅ ) → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) |
| 51 | n0 | ⊢ ( ( ran ( ℝ D 𝐹 ) ∩ ( -∞ (,) 0 ) ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( ran ( ℝ D 𝐹 ) ∩ ( -∞ (,) 0 ) ) ) | |
| 52 | elin | ⊢ ( 𝑥 ∈ ( ran ( ℝ D 𝐹 ) ∩ ( -∞ (,) 0 ) ) ↔ ( 𝑥 ∈ ran ( ℝ D 𝐹 ) ∧ 𝑥 ∈ ( -∞ (,) 0 ) ) ) | |
| 53 | fvelrnb | ⊢ ( ( ℝ D 𝐹 ) Fn ( 𝐴 (,) 𝐵 ) → ( 𝑥 ∈ ran ( ℝ D 𝐹 ) ↔ ∃ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = 𝑥 ) ) | |
| 54 | 44 53 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ran ( ℝ D 𝐹 ) ↔ ∃ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = 𝑥 ) ) |
| 55 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) → 𝐴 ∈ ℝ ) |
| 56 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) → 𝐵 ∈ ℝ ) |
| 57 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 58 | 44 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) → ( ℝ D 𝐹 ) Fn ( 𝐴 (,) 𝐵 ) ) |
| 59 | 43 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 60 | 59 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ∈ ℝ ) |
| 61 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 0 ∈ ran ( ℝ D 𝐹 ) ) |
| 62 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 63 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 64 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 65 | rescncf | ⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) → ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) ) | |
| 66 | 64 3 65 | mpsyl | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
| 67 | 66 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℝ ) ) |
| 68 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 69 | 68 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 70 | fss | ⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | |
| 71 | 12 68 70 | sylancl | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 72 | 64 14 | sstrid | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 73 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 74 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 75 | 73 74 | dvres | ⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) ∧ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) ) |
| 76 | 69 71 14 72 75 | syl22anc | ⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) ) |
| 77 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 78 | iooretop | ⊢ ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) | |
| 79 | isopn3i | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) | |
| 80 | 77 78 79 | mp2an | ⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) |
| 81 | 80 | reseq2i | ⊢ ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) |
| 82 | fnresdm | ⊢ ( ( ℝ D 𝐹 ) Fn ( 𝐴 (,) 𝐵 ) → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( ℝ D 𝐹 ) ) | |
| 83 | 44 82 | syl | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( ℝ D 𝐹 ) ) |
| 84 | 81 83 | eqtrid | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) = ( ℝ D 𝐹 ) ) |
| 85 | 76 84 | eqtrd | ⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ) = ( ℝ D 𝐹 ) ) |
| 86 | 85 | dmeqd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ) = dom ( ℝ D 𝐹 ) ) |
| 87 | 86 4 | eqtrd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 88 | 87 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → dom ( ℝ D ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 89 | 62 63 67 88 | dvivth | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → ( ( ( ℝ D ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ) ‘ 𝑦 ) [,] ( ( ℝ D ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ) ‘ 𝑧 ) ) ⊆ ran ( ℝ D ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ) ) |
| 90 | 85 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → ( ℝ D ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ) = ( ℝ D 𝐹 ) ) |
| 91 | 90 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → ( ( ℝ D ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ) ‘ 𝑦 ) = ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) |
| 92 | 90 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → ( ( ℝ D ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ) ‘ 𝑧 ) = ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) |
| 93 | 91 92 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → ( ( ( ℝ D ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ) ‘ 𝑦 ) [,] ( ( ℝ D ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ) ‘ 𝑧 ) ) = ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) |
| 94 | 90 | rneqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → ran ( ℝ D ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) ) = ran ( ℝ D 𝐹 ) ) |
| 95 | 89 93 94 | 3sstr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ⊆ ran ( ℝ D 𝐹 ) ) |
| 96 | 19 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → 0 ∈ ℝ ) |
| 97 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) | |
| 98 | elioomnf | ⊢ ( 0 ∈ ℝ* → ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ↔ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) < 0 ) ) ) | |
| 99 | 22 98 | ax-mp | ⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ↔ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) < 0 ) ) |
| 100 | 97 99 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) < 0 ) ) |
| 101 | 100 | simprd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) < 0 ) |
| 102 | 100 | simpld | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℝ ) |
| 103 | ltle | ⊢ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) < 0 → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ≤ 0 ) ) | |
| 104 | 102 19 103 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) < 0 → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ≤ 0 ) ) |
| 105 | 101 104 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ≤ 0 ) |
| 106 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) | |
| 107 | 63 60 | syldan | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ∈ ℝ ) |
| 108 | elicc2 | ⊢ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ∈ ℝ ) → ( 0 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ↔ ( 0 ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ≤ 0 ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) ) | |
| 109 | 102 107 108 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → ( 0 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ↔ ( 0 ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ≤ 0 ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) ) |
| 110 | 96 105 106 109 | mpbir3and | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → 0 ∈ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) [,] ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) |
| 111 | 95 110 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ ( 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) → 0 ∈ ran ( ℝ D 𝐹 ) ) |
| 112 | 111 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) → 0 ∈ ran ( ℝ D 𝐹 ) ) ) |
| 113 | 61 112 | mtod | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) |
| 114 | ltnle | ⊢ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑧 ) < 0 ↔ ¬ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) | |
| 115 | 60 19 114 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑧 ) < 0 ↔ ¬ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ) ) |
| 116 | 113 115 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑧 ) < 0 ) |
| 117 | elioomnf | ⊢ ( 0 ∈ ℝ* → ( ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 0 ) ↔ ( ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) < 0 ) ) ) | |
| 118 | 22 117 | ax-mp | ⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 0 ) ↔ ( ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ( ( ℝ D 𝐹 ) ‘ 𝑧 ) < 0 ) ) |
| 119 | 60 116 118 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) ∧ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 0 ) ) |
| 120 | 119 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) → ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 0 ) ) |
| 121 | ffnfv | ⊢ ( ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ( -∞ (,) 0 ) ↔ ( ( ℝ D 𝐹 ) Fn ( 𝐴 (,) 𝐵 ) ∧ ∀ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 0 ) ) ) | |
| 122 | 58 120 121 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ( -∞ (,) 0 ) ) |
| 123 | 55 56 57 122 | dvlt0 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) → 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) |
| 124 | 123 | olcd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ∧ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ) ) → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) |
| 125 | 124 | expr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) ) |
| 126 | eleq1 | ⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = 𝑥 → ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) ↔ 𝑥 ∈ ( -∞ (,) 0 ) ) ) | |
| 127 | 126 | imbi1d | ⊢ ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = 𝑥 → ( ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ∈ ( -∞ (,) 0 ) → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) ↔ ( 𝑥 ∈ ( -∞ (,) 0 ) → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) ) ) |
| 128 | 125 127 | syl5ibcom | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = 𝑥 → ( 𝑥 ∈ ( -∞ (,) 0 ) → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) ) ) |
| 129 | 128 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = 𝑥 → ( 𝑥 ∈ ( -∞ (,) 0 ) → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) ) ) |
| 130 | 54 129 | sylbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ran ( ℝ D 𝐹 ) → ( 𝑥 ∈ ( -∞ (,) 0 ) → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) ) ) |
| 131 | 130 | impd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ran ( ℝ D 𝐹 ) ∧ 𝑥 ∈ ( -∞ (,) 0 ) ) → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) ) |
| 132 | 52 131 | biimtrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ran ( ℝ D 𝐹 ) ∩ ( -∞ (,) 0 ) ) → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) ) |
| 133 | 132 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑥 𝑥 ∈ ( ran ( ℝ D 𝐹 ) ∩ ( -∞ (,) 0 ) ) → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) ) |
| 134 | 51 133 | biimtrid | ⊢ ( 𝜑 → ( ( ran ( ℝ D 𝐹 ) ∩ ( -∞ (,) 0 ) ) ≠ ∅ → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) ) |
| 135 | 134 | imp | ⊢ ( ( 𝜑 ∧ ( ran ( ℝ D 𝐹 ) ∩ ( -∞ (,) 0 ) ) ≠ ∅ ) → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) |
| 136 | 50 135 | pm2.61dane | ⊢ ( 𝜑 → ( 𝐹 Isom < , < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ∨ 𝐹 Isom < , ◡ < ( ( 𝐴 [,] 𝐵 ) , ran 𝐹 ) ) ) |