This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Combine ivthicc with evthicc to exactly describe the image of a closed interval. (Contributed by Mario Carneiro, 19-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evthicc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| evthicc.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| evthicc.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| evthicc.4 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | ||
| Assertion | evthicc2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ran 𝐹 = ( 𝑥 [,] 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evthicc.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | evthicc.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | evthicc.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 4 | evthicc.4 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | |
| 5 | 1 2 3 4 | evthicc | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ∃ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 6 | reeanv | ⊢ ( ∃ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ↔ ( ∃ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ∃ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 7 | 5 6 | sylibr | ⊢ ( 𝜑 → ∃ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 8 | r19.26 | ⊢ ( ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ↔ ( ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 9 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 10 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 12 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 13 | 11 12 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℝ ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ℝ ) |
| 15 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 16 | 11 15 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) |
| 17 | 16 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) |
| 18 | 11 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 19 | 18 | ffnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) → 𝐹 Fn ( 𝐴 [,] 𝐵 ) ) |
| 20 | 16 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) |
| 21 | elicc2 | ⊢ ( ( ( 𝐹 ‘ 𝑏 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝐹 ‘ 𝑏 ) [,] ( 𝐹 ‘ 𝑎 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ) ) ) | |
| 22 | 13 20 21 | syl2an2r | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝐹 ‘ 𝑏 ) [,] ( 𝐹 ‘ 𝑎 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ) ) ) |
| 23 | 3anass | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ) ) ) | |
| 24 | 22 23 | bitrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝐹 ‘ 𝑏 ) [,] ( 𝐹 ‘ 𝑎 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 25 | ancom | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ↔ ( ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ) ) | |
| 26 | 11 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 27 | 26 | biantrurd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 28 | 25 27 | bitrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ∧ ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ) ) ) ) |
| 29 | 24 28 | bitr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝐹 ‘ 𝑏 ) [,] ( 𝐹 ‘ 𝑎 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 30 | 29 | ralbidva | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝐹 ‘ 𝑏 ) [,] ( 𝐹 ‘ 𝑎 ) ) ↔ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 31 | 30 | biimpar | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) → ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝐹 ‘ 𝑏 ) [,] ( 𝐹 ‘ 𝑎 ) ) ) |
| 32 | ffnfv | ⊢ ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ( ( 𝐹 ‘ 𝑏 ) [,] ( 𝐹 ‘ 𝑎 ) ) ↔ ( 𝐹 Fn ( 𝐴 [,] 𝐵 ) ∧ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝐹 ‘ 𝑏 ) [,] ( 𝐹 ‘ 𝑎 ) ) ) ) | |
| 33 | 19 31 32 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ( ( 𝐹 ‘ 𝑏 ) [,] ( 𝐹 ‘ 𝑎 ) ) ) |
| 34 | 33 | frnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) → ran 𝐹 ⊆ ( ( 𝐹 ‘ 𝑏 ) [,] ( 𝐹 ‘ 𝑎 ) ) ) |
| 35 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝐴 ∈ ℝ ) |
| 36 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝐵 ∈ ℝ ) |
| 37 | ssidd | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) | |
| 38 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 39 | ssid | ⊢ ℂ ⊆ ℂ | |
| 40 | cncfss | ⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | |
| 41 | 38 39 40 | mp2an | ⊢ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 42 | 41 9 | sselid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 43 | 11 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 44 | 35 36 12 15 37 42 43 | ivthicc | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( 𝐹 ‘ 𝑏 ) [,] ( 𝐹 ‘ 𝑎 ) ) ⊆ ran 𝐹 ) |
| 45 | 44 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) → ( ( 𝐹 ‘ 𝑏 ) [,] ( 𝐹 ‘ 𝑎 ) ) ⊆ ran 𝐹 ) |
| 46 | 34 45 | eqssd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) → ran 𝐹 = ( ( 𝐹 ‘ 𝑏 ) [,] ( 𝐹 ‘ 𝑎 ) ) ) |
| 47 | rspceov | ⊢ ( ( ( 𝐹 ‘ 𝑏 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑎 ) ∈ ℝ ∧ ran 𝐹 = ( ( 𝐹 ‘ 𝑏 ) [,] ( 𝐹 ‘ 𝑎 ) ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ran 𝐹 = ( 𝑥 [,] 𝑦 ) ) | |
| 48 | 14 17 46 47 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ran 𝐹 = ( 𝑥 [,] 𝑦 ) ) |
| 49 | 48 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ran 𝐹 = ( 𝑥 [,] 𝑦 ) ) ) |
| 50 | 8 49 | biimtrrid | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ran 𝐹 = ( 𝑥 [,] 𝑦 ) ) ) |
| 51 | 50 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑏 ∈ ( 𝐴 [,] 𝐵 ) ( ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑏 ) ≤ ( 𝐹 ‘ 𝑧 ) ) → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ran 𝐹 = ( 𝑥 [,] 𝑦 ) ) ) |
| 52 | 7 51 | mpd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ran 𝐹 = ( 𝑥 [,] 𝑦 ) ) |