This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition for a pair of classes/functions to be a path (in an undirected graph). (Contributed by AV, 4-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfpth2 | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispth | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) | |
| 2 | istrl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) ) | |
| 3 | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 4 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 5 | 4 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 6 | ffn | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 7 | 6 | adantl | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 8 | 0elfz | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 9 | 8 | adantr | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 10 | nn0fz0 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 11 | 10 | biimpi | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 12 | 11 | adantr | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 13 | 7 9 12 | 3jca | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 14 | 3 5 13 | syl2anc | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) → ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 16 | 2 15 | sylbi | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 17 | fnimapr | ⊢ ( ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ 0 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∧ ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) | |
| 18 | 16 17 | syl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) |
| 19 | 18 | ineq1d | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 20 | 19 | eqeq1d | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ↔ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
| 21 | disj | ⊢ ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ↔ ∀ 𝑥 ∈ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ¬ 𝑥 ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 22 | fvex | ⊢ ( 𝑃 ‘ 0 ) ∈ V | |
| 23 | fvex | ⊢ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ V | |
| 24 | eleq1 | ⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( 𝑥 ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( 𝑃 ‘ 0 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | |
| 25 | 24 | notbid | ⊢ ( 𝑥 = ( 𝑃 ‘ 0 ) → ( ¬ 𝑥 ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ¬ ( 𝑃 ‘ 0 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 26 | eleq1 | ⊢ ( 𝑥 = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 𝑥 ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | |
| 27 | 26 | notbid | ⊢ ( 𝑥 = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( ¬ 𝑥 ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 28 | 22 23 25 27 | ralpr | ⊢ ( ∀ 𝑥 ∈ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ¬ 𝑥 ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( ¬ ( 𝑃 ‘ 0 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 29 | df-nel | ⊢ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ¬ ( 𝑃 ‘ 0 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 30 | 29 | bicomi | ⊢ ( ¬ ( 𝑃 ‘ 0 ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 31 | 28 30 | bianbi | ⊢ ( ∀ 𝑥 ∈ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ¬ 𝑥 ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 32 | 21 31 | bitri | ⊢ ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ↔ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 33 | 20 32 | bitrdi | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ↔ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 34 | 33 | anbi2d | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ↔ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) ) |
| 35 | ancom | ⊢ ( ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ ( ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | |
| 36 | 35 | bianass | ⊢ ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ↔ ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 37 | 36 | a1i | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ↔ ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 38 | noel | ⊢ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ∅ | |
| 39 | 38 | biantru | ⊢ ( Fun ◡ ( 𝑃 ↾ ∅ ) ↔ ( Fun ◡ ( 𝑃 ↾ ∅ ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ∅ ) ) |
| 40 | 39 | bicomi | ⊢ ( ( Fun ◡ ( 𝑃 ↾ ∅ ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ∅ ) ↔ Fun ◡ ( 𝑃 ↾ ∅ ) ) |
| 41 | 40 | a1i | ⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( ( Fun ◡ ( 𝑃 ↾ ∅ ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ∅ ) ↔ Fun ◡ ( 𝑃 ↾ ∅ ) ) ) |
| 42 | oveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ( 1 ..^ 0 ) ) | |
| 43 | 0le1 | ⊢ 0 ≤ 1 | |
| 44 | 1z | ⊢ 1 ∈ ℤ | |
| 45 | 0z | ⊢ 0 ∈ ℤ | |
| 46 | fzon | ⊢ ( ( 1 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 0 ≤ 1 ↔ ( 1 ..^ 0 ) = ∅ ) ) | |
| 47 | 44 45 46 | mp2an | ⊢ ( 0 ≤ 1 ↔ ( 1 ..^ 0 ) = ∅ ) |
| 48 | 43 47 | mpbi | ⊢ ( 1 ..^ 0 ) = ∅ |
| 49 | 42 48 | eqtrdi | ⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ∅ ) |
| 50 | 49 | reseq2d | ⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( 𝑃 ↾ ∅ ) ) |
| 51 | 50 | cnveqd | ⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ◡ ( 𝑃 ↾ ∅ ) ) |
| 52 | 51 | funeqd | ⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ∅ ) ) ) |
| 53 | 49 | imaeq2d | ⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( 𝑃 “ ∅ ) ) |
| 54 | ima0 | ⊢ ( 𝑃 “ ∅ ) = ∅ | |
| 55 | 53 54 | eqtrdi | ⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ∅ ) |
| 56 | 55 | eleq2d | ⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ∅ ) ) |
| 57 | 56 | notbid | ⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ∅ ) ) |
| 58 | 52 57 | anbi12d | ⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ ( Fun ◡ ( 𝑃 ↾ ∅ ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ∅ ) ) ) |
| 59 | oveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 1 ... ( ♯ ‘ 𝐹 ) ) = ( 1 ... 0 ) ) | |
| 60 | fz10 | ⊢ ( 1 ... 0 ) = ∅ | |
| 61 | 59 60 | eqtrdi | ⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 1 ... ( ♯ ‘ 𝐹 ) ) = ∅ ) |
| 62 | 61 | reseq2d | ⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = ( 𝑃 ↾ ∅ ) ) |
| 63 | 62 | cnveqd | ⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) = ◡ ( 𝑃 ↾ ∅ ) ) |
| 64 | 63 | funeqd | ⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ∅ ) ) ) |
| 65 | 41 58 64 | 3bitr4d | ⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 66 | 65 | a1d | ⊢ ( ( ♯ ‘ 𝐹 ) = 0 → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 67 | df-nel | ⊢ ( ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 68 | 67 | bicomi | ⊢ ( ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 69 | 68 | anbi2i | ⊢ ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 70 | trliswlk | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 71 | 3 10 | sylib | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 72 | fzonel | ⊢ ¬ ( ♯ ‘ 𝐹 ) ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) | |
| 73 | 72 | a1i | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ¬ ( ♯ ‘ 𝐹 ) ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 74 | 71 73 | eldifd | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ( ( 0 ... ( ♯ ‘ 𝐹 ) ) ∖ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 75 | 1eluzge0 | ⊢ 1 ∈ ( ℤ≥ ‘ 0 ) | |
| 76 | fzoss1 | ⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 77 | 75 76 | mp1i | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 78 | fzossfz | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) | |
| 79 | 77 78 | sstrdi | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 80 | 5 74 79 | 3jca | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ( ( 0 ... ( ♯ ‘ 𝐹 ) ) ∖ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 81 | resf1ext2b | ⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ( ( 0 ... ( ♯ ‘ 𝐹 ) ) ∖ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) ) ) | |
| 82 | 70 80 81 | 3syl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) ) ) |
| 83 | 69 82 | bitrid | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) ) ) |
| 84 | 83 | adantl | ⊢ ( ( ( ♯ ‘ 𝐹 ) ≠ 0 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) ) ) |
| 85 | elnnne0 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ≠ 0 ) ) | |
| 86 | elnnuz | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ ↔ ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 1 ) ) | |
| 87 | 85 86 | sylbb1 | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ≠ 0 ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 88 | 87 | ex | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐹 ) ≠ 0 → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 1 ) ) ) |
| 89 | 70 3 88 | 3syl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( ♯ ‘ 𝐹 ) ≠ 0 → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 1 ) ) ) |
| 90 | 89 | impcom | ⊢ ( ( ( ♯ ‘ 𝐹 ) ≠ 0 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 91 | fzisfzounsn | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... ( ♯ ‘ 𝐹 ) ) = ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) | |
| 92 | 90 91 | syl | ⊢ ( ( ( ♯ ‘ 𝐹 ) ≠ 0 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → ( 1 ... ( ♯ ‘ 𝐹 ) ) = ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) |
| 93 | 92 | eqcomd | ⊢ ( ( ( ♯ ‘ 𝐹 ) ≠ 0 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) = ( 1 ... ( ♯ ‘ 𝐹 ) ) ) |
| 94 | 93 | reseq2d | ⊢ ( ( ( ♯ ‘ 𝐹 ) ≠ 0 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → ( 𝑃 ↾ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) = ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 95 | 94 | cnveqd | ⊢ ( ( ( ♯ ‘ 𝐹 ) ≠ 0 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → ◡ ( 𝑃 ↾ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) = ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 96 | 95 | funeqd | ⊢ ( ( ( ♯ ‘ 𝐹 ) ≠ 0 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → ( Fun ◡ ( 𝑃 ↾ ( ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∪ { ( ♯ ‘ 𝐹 ) } ) ) ↔ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 97 | 84 96 | bitrd | ⊢ ( ( ( ♯ ‘ 𝐹 ) ≠ 0 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 98 | 97 | ex | ⊢ ( ( ♯ ‘ 𝐹 ) ≠ 0 → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 99 | 66 98 | pm2.61ine | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 100 | 99 | anbi1d | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ∈ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ ( Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 101 | 34 37 100 | 3bitrd | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ↔ ( Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 102 | 101 | pm5.32i | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 103 | 3anass | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) ) | |
| 104 | 3anass | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) | |
| 105 | 102 103 104 | 3bitr4i | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 106 | 1 105 | bitri | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |