This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a pair of classes/functions to be a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017) (Revised by AV, 9-Jan-2021) (Revised by AV, 29-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ispth | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pthsfval | ⊢ ( Paths ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ∧ Fun ◡ ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ∧ ( ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) ∩ ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ) = ∅ ) } | |
| 2 | 3anass | ⊢ ( ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ∧ Fun ◡ ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ∧ ( ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) ∩ ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ) = ∅ ) ↔ ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ∧ ( Fun ◡ ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ∧ ( ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) ∩ ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ) = ∅ ) ) ) | |
| 3 | 2 | opabbii | ⊢ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ∧ Fun ◡ ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ∧ ( ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) ∩ ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ) = ∅ ) } = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ∧ ( Fun ◡ ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ∧ ( ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) ∩ ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ) = ∅ ) ) } |
| 4 | 1 3 | eqtri | ⊢ ( Paths ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ∧ ( Fun ◡ ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ∧ ( ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) ∩ ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ) = ∅ ) ) } |
| 5 | simpr | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → 𝑝 = 𝑃 ) | |
| 6 | fveq2 | ⊢ ( 𝑓 = 𝐹 → ( ♯ ‘ 𝑓 ) = ( ♯ ‘ 𝐹 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑓 = 𝐹 → ( 1 ..^ ( ♯ ‘ 𝑓 ) ) = ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 1 ..^ ( ♯ ‘ 𝑓 ) ) = ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 9 | 5 8 | reseq12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) = ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 10 | 9 | cnveqd | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ◡ ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) = ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 11 | 10 | funeqd | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( Fun ◡ ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ↔ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 12 | 6 | preq2d | ⊢ ( 𝑓 = 𝐹 → { 0 , ( ♯ ‘ 𝑓 ) } = { 0 , ( ♯ ‘ 𝐹 ) } ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → { 0 , ( ♯ ‘ 𝑓 ) } = { 0 , ( ♯ ‘ 𝐹 ) } ) |
| 14 | 5 13 | imaeq12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) = ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ) |
| 15 | 5 8 | imaeq12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) = ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 16 | 14 15 | ineq12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) ∩ ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ) = ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 17 | 16 | eqeq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) ∩ ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ) = ∅ ↔ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
| 18 | 11 17 | anbi12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( Fun ◡ ( 𝑝 ↾ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ∧ ( ( 𝑝 “ { 0 , ( ♯ ‘ 𝑓 ) } ) ∩ ( 𝑝 “ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) ) ) = ∅ ) ↔ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) ) |
| 19 | reltrls | ⊢ Rel ( Trails ‘ 𝐺 ) | |
| 20 | 4 18 19 | brfvopabrbr | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) ) |
| 21 | 3anass | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) ) | |
| 22 | 20 21 | bitr4i | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |