This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004) Avoid ax-10 , ax-11 , ax-12 . (Revised by GG, 28-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disj | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-in | ⊢ ( 𝐴 ∩ 𝐵 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } | |
| 2 | 1 | eqeq1i | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } = ∅ ) |
| 3 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 4 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵 ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 6 | 5 | eqabcbw | ⊢ ( { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } = ∅ ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ∅ ) ) |
| 7 | imnan | ⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 8 | noel | ⊢ ¬ 𝑥 ∈ ∅ | |
| 9 | 8 | nbn | ⊢ ( ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ∅ ) ) |
| 10 | 7 9 | bitr2i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ∅ ) ↔ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 11 | 10 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ ∅ ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 12 | 2 6 11 | 3bitri | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 13 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) | |
| 14 | 12 13 | bitr4i | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) |