This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition for a pair of classes/functions to be a path (in an undirected graph). (Contributed by AV, 4-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfpth2 | |- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ... ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispth | |- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
|
| 2 | istrl | |- ( F ( Trails ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' F ) ) |
|
| 3 | wlkcl | |- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
|
| 4 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 5 | 4 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 6 | ffn | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> P Fn ( 0 ... ( # ` F ) ) ) |
|
| 7 | 6 | adantl | |- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> P Fn ( 0 ... ( # ` F ) ) ) |
| 8 | 0elfz | |- ( ( # ` F ) e. NN0 -> 0 e. ( 0 ... ( # ` F ) ) ) |
|
| 9 | 8 | adantr | |- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 10 | nn0fz0 | |- ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
|
| 11 | 10 | biimpi | |- ( ( # ` F ) e. NN0 -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 12 | 11 | adantr | |- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 13 | 7 9 12 | 3jca | |- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ ( # ` F ) e. ( 0 ... ( # ` F ) ) ) ) |
| 14 | 3 5 13 | syl2anc | |- ( F ( Walks ` G ) P -> ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ ( # ` F ) e. ( 0 ... ( # ` F ) ) ) ) |
| 15 | 14 | adantr | |- ( ( F ( Walks ` G ) P /\ Fun `' F ) -> ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ ( # ` F ) e. ( 0 ... ( # ` F ) ) ) ) |
| 16 | 2 15 | sylbi | |- ( F ( Trails ` G ) P -> ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ ( # ` F ) e. ( 0 ... ( # ` F ) ) ) ) |
| 17 | fnimapr | |- ( ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ ( # ` F ) e. ( 0 ... ( # ` F ) ) ) -> ( P " { 0 , ( # ` F ) } ) = { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) |
|
| 18 | 16 17 | syl | |- ( F ( Trails ` G ) P -> ( P " { 0 , ( # ` F ) } ) = { ( P ` 0 ) , ( P ` ( # ` F ) ) } ) |
| 19 | 18 | ineq1d | |- ( F ( Trails ` G ) P -> ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = ( { ( P ` 0 ) , ( P ` ( # ` F ) ) } i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 20 | 19 | eqeq1d | |- ( F ( Trails ` G ) P -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) <-> ( { ( P ` 0 ) , ( P ` ( # ` F ) ) } i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
| 21 | disj | |- ( ( { ( P ` 0 ) , ( P ` ( # ` F ) ) } i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) <-> A. x e. { ( P ` 0 ) , ( P ` ( # ` F ) ) } -. x e. ( P " ( 1 ..^ ( # ` F ) ) ) ) |
|
| 22 | fvex | |- ( P ` 0 ) e. _V |
|
| 23 | fvex | |- ( P ` ( # ` F ) ) e. _V |
|
| 24 | eleq1 | |- ( x = ( P ` 0 ) -> ( x e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( P ` 0 ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
|
| 25 | 24 | notbid | |- ( x = ( P ` 0 ) -> ( -. x e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> -. ( P ` 0 ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 26 | eleq1 | |- ( x = ( P ` ( # ` F ) ) -> ( x e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
|
| 27 | 26 | notbid | |- ( x = ( P ` ( # ` F ) ) -> ( -. x e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 28 | 22 23 25 27 | ralpr | |- ( A. x e. { ( P ` 0 ) , ( P ` ( # ` F ) ) } -. x e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( -. ( P ` 0 ) e. ( P " ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 29 | df-nel | |- ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) <-> -. ( P ` 0 ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) |
|
| 30 | 29 | bicomi | |- ( -. ( P ` 0 ) e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) |
| 31 | 28 30 | bianbi | |- ( A. x e. { ( P ` 0 ) , ( P ` ( # ` F ) ) } -. x e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 32 | 21 31 | bitri | |- ( ( { ( P ` 0 ) , ( P ` ( # ` F ) ) } i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) <-> ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 33 | 20 32 | bitrdi | |- ( F ( Trails ` G ) P -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) <-> ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) |
| 34 | 33 | anbi2d | |- ( F ( Trails ` G ) P -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) <-> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) ) |
| 35 | ancom | |- ( ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> ( -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
|
| 36 | 35 | bianass | |- ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) <-> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 37 | 36 | a1i | |- ( F ( Trails ` G ) P -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) ) <-> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) |
| 38 | noel | |- -. ( P ` ( # ` F ) ) e. (/) |
|
| 39 | 38 | biantru | |- ( Fun `' ( P |` (/) ) <-> ( Fun `' ( P |` (/) ) /\ -. ( P ` ( # ` F ) ) e. (/) ) ) |
| 40 | 39 | bicomi | |- ( ( Fun `' ( P |` (/) ) /\ -. ( P ` ( # ` F ) ) e. (/) ) <-> Fun `' ( P |` (/) ) ) |
| 41 | 40 | a1i | |- ( ( # ` F ) = 0 -> ( ( Fun `' ( P |` (/) ) /\ -. ( P ` ( # ` F ) ) e. (/) ) <-> Fun `' ( P |` (/) ) ) ) |
| 42 | oveq2 | |- ( ( # ` F ) = 0 -> ( 1 ..^ ( # ` F ) ) = ( 1 ..^ 0 ) ) |
|
| 43 | 0le1 | |- 0 <_ 1 |
|
| 44 | 1z | |- 1 e. ZZ |
|
| 45 | 0z | |- 0 e. ZZ |
|
| 46 | fzon | |- ( ( 1 e. ZZ /\ 0 e. ZZ ) -> ( 0 <_ 1 <-> ( 1 ..^ 0 ) = (/) ) ) |
|
| 47 | 44 45 46 | mp2an | |- ( 0 <_ 1 <-> ( 1 ..^ 0 ) = (/) ) |
| 48 | 43 47 | mpbi | |- ( 1 ..^ 0 ) = (/) |
| 49 | 42 48 | eqtrdi | |- ( ( # ` F ) = 0 -> ( 1 ..^ ( # ` F ) ) = (/) ) |
| 50 | 49 | reseq2d | |- ( ( # ` F ) = 0 -> ( P |` ( 1 ..^ ( # ` F ) ) ) = ( P |` (/) ) ) |
| 51 | 50 | cnveqd | |- ( ( # ` F ) = 0 -> `' ( P |` ( 1 ..^ ( # ` F ) ) ) = `' ( P |` (/) ) ) |
| 52 | 51 | funeqd | |- ( ( # ` F ) = 0 -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) <-> Fun `' ( P |` (/) ) ) ) |
| 53 | 49 | imaeq2d | |- ( ( # ` F ) = 0 -> ( P " ( 1 ..^ ( # ` F ) ) ) = ( P " (/) ) ) |
| 54 | ima0 | |- ( P " (/) ) = (/) |
|
| 55 | 53 54 | eqtrdi | |- ( ( # ` F ) = 0 -> ( P " ( 1 ..^ ( # ` F ) ) ) = (/) ) |
| 56 | 55 | eleq2d | |- ( ( # ` F ) = 0 -> ( ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( P ` ( # ` F ) ) e. (/) ) ) |
| 57 | 56 | notbid | |- ( ( # ` F ) = 0 -> ( -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> -. ( P ` ( # ` F ) ) e. (/) ) ) |
| 58 | 52 57 | anbi12d | |- ( ( # ` F ) = 0 -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> ( Fun `' ( P |` (/) ) /\ -. ( P ` ( # ` F ) ) e. (/) ) ) ) |
| 59 | oveq2 | |- ( ( # ` F ) = 0 -> ( 1 ... ( # ` F ) ) = ( 1 ... 0 ) ) |
|
| 60 | fz10 | |- ( 1 ... 0 ) = (/) |
|
| 61 | 59 60 | eqtrdi | |- ( ( # ` F ) = 0 -> ( 1 ... ( # ` F ) ) = (/) ) |
| 62 | 61 | reseq2d | |- ( ( # ` F ) = 0 -> ( P |` ( 1 ... ( # ` F ) ) ) = ( P |` (/) ) ) |
| 63 | 62 | cnveqd | |- ( ( # ` F ) = 0 -> `' ( P |` ( 1 ... ( # ` F ) ) ) = `' ( P |` (/) ) ) |
| 64 | 63 | funeqd | |- ( ( # ` F ) = 0 -> ( Fun `' ( P |` ( 1 ... ( # ` F ) ) ) <-> Fun `' ( P |` (/) ) ) ) |
| 65 | 41 58 64 | 3bitr4d | |- ( ( # ` F ) = 0 -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> Fun `' ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 66 | 65 | a1d | |- ( ( # ` F ) = 0 -> ( F ( Trails ` G ) P -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> Fun `' ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) |
| 67 | df-nel | |- ( ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) <-> -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) |
|
| 68 | 67 | bicomi | |- ( -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) <-> ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) |
| 69 | 68 | anbi2i | |- ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 70 | trliswlk | |- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
|
| 71 | 3 10 | sylib | |- ( F ( Walks ` G ) P -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 72 | fzonel | |- -. ( # ` F ) e. ( 1 ..^ ( # ` F ) ) |
|
| 73 | 72 | a1i | |- ( F ( Walks ` G ) P -> -. ( # ` F ) e. ( 1 ..^ ( # ` F ) ) ) |
| 74 | 71 73 | eldifd | |- ( F ( Walks ` G ) P -> ( # ` F ) e. ( ( 0 ... ( # ` F ) ) \ ( 1 ..^ ( # ` F ) ) ) ) |
| 75 | 1eluzge0 | |- 1 e. ( ZZ>= ` 0 ) |
|
| 76 | fzoss1 | |- ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
|
| 77 | 75 76 | mp1i | |- ( F ( Walks ` G ) P -> ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 78 | fzossfz | |- ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
|
| 79 | 77 78 | sstrdi | |- ( F ( Walks ` G ) P -> ( 1 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) |
| 80 | 5 74 79 | 3jca | |- ( F ( Walks ` G ) P -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. ( ( 0 ... ( # ` F ) ) \ ( 1 ..^ ( # ` F ) ) ) /\ ( 1 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) ) |
| 81 | resf1ext2b | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. ( ( 0 ... ( # ` F ) ) \ ( 1 ..^ ( # ` F ) ) ) /\ ( 1 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> Fun `' ( P |` ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) ) ) |
|
| 82 | 70 80 81 | 3syl | |- ( F ( Trails ` G ) P -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( P ` ( # ` F ) ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> Fun `' ( P |` ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) ) ) |
| 83 | 69 82 | bitrid | |- ( F ( Trails ` G ) P -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> Fun `' ( P |` ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) ) ) |
| 84 | 83 | adantl | |- ( ( ( # ` F ) =/= 0 /\ F ( Trails ` G ) P ) -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> Fun `' ( P |` ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) ) ) |
| 85 | elnnne0 | |- ( ( # ` F ) e. NN <-> ( ( # ` F ) e. NN0 /\ ( # ` F ) =/= 0 ) ) |
|
| 86 | elnnuz | |- ( ( # ` F ) e. NN <-> ( # ` F ) e. ( ZZ>= ` 1 ) ) |
|
| 87 | 85 86 | sylbb1 | |- ( ( ( # ` F ) e. NN0 /\ ( # ` F ) =/= 0 ) -> ( # ` F ) e. ( ZZ>= ` 1 ) ) |
| 88 | 87 | ex | |- ( ( # ` F ) e. NN0 -> ( ( # ` F ) =/= 0 -> ( # ` F ) e. ( ZZ>= ` 1 ) ) ) |
| 89 | 70 3 88 | 3syl | |- ( F ( Trails ` G ) P -> ( ( # ` F ) =/= 0 -> ( # ` F ) e. ( ZZ>= ` 1 ) ) ) |
| 90 | 89 | impcom | |- ( ( ( # ` F ) =/= 0 /\ F ( Trails ` G ) P ) -> ( # ` F ) e. ( ZZ>= ` 1 ) ) |
| 91 | fzisfzounsn | |- ( ( # ` F ) e. ( ZZ>= ` 1 ) -> ( 1 ... ( # ` F ) ) = ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) |
|
| 92 | 90 91 | syl | |- ( ( ( # ` F ) =/= 0 /\ F ( Trails ` G ) P ) -> ( 1 ... ( # ` F ) ) = ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) |
| 93 | 92 | eqcomd | |- ( ( ( # ` F ) =/= 0 /\ F ( Trails ` G ) P ) -> ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) = ( 1 ... ( # ` F ) ) ) |
| 94 | 93 | reseq2d | |- ( ( ( # ` F ) =/= 0 /\ F ( Trails ` G ) P ) -> ( P |` ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) = ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 95 | 94 | cnveqd | |- ( ( ( # ` F ) =/= 0 /\ F ( Trails ` G ) P ) -> `' ( P |` ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) = `' ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 96 | 95 | funeqd | |- ( ( ( # ` F ) =/= 0 /\ F ( Trails ` G ) P ) -> ( Fun `' ( P |` ( ( 1 ..^ ( # ` F ) ) u. { ( # ` F ) } ) ) <-> Fun `' ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 97 | 84 96 | bitrd | |- ( ( ( # ` F ) =/= 0 /\ F ( Trails ` G ) P ) -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> Fun `' ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 98 | 97 | ex | |- ( ( # ` F ) =/= 0 -> ( F ( Trails ` G ) P -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> Fun `' ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) |
| 99 | 66 98 | pm2.61ine | |- ( F ( Trails ` G ) P -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> Fun `' ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 100 | 99 | anbi1d | |- ( F ( Trails ` G ) P -> ( ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ -. ( P ` ( # ` F ) ) e. ( P " ( 1 ..^ ( # ` F ) ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> ( Fun `' ( P |` ( 1 ... ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) |
| 101 | 34 37 100 | 3bitrd | |- ( F ( Trails ` G ) P -> ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) <-> ( Fun `' ( P |` ( 1 ... ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) |
| 102 | 101 | pm5.32i | |- ( ( F ( Trails ` G ) P /\ ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) <-> ( F ( Trails ` G ) P /\ ( Fun `' ( P |` ( 1 ... ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) |
| 103 | 3anass | |- ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) <-> ( F ( Trails ` G ) P /\ ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) ) |
|
| 104 | 3anass | |- ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ... ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) <-> ( F ( Trails ` G ) P /\ ( Fun `' ( P |` ( 1 ... ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) ) |
|
| 105 | 102 103 104 | 3bitr4i | |- ( ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ... ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
| 106 | 1 105 | bitri | |- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ... ( # ` F ) ) ) /\ ( P ` 0 ) e/ ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |