This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extension of an injection which is a restriction of a function. (Contributed by AV, 3-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resf1ext2b | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( Fun ◡ ( 𝐹 ↾ 𝐶 ) ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ↔ Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) | |
| 2 | 1 | 3adant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) |
| 3 | df-f1 | ⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ↔ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ∧ Fun ◡ ( 𝐹 ↾ 𝐶 ) ) ) | |
| 4 | resf1extb | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ↔ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) ) | |
| 5 | df-f1 | ⊢ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ∧ Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) ) | |
| 6 | 5 | simprbi | ⊢ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 → Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) |
| 7 | 4 6 | biimtrdi | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) → Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) ) |
| 8 | 7 | expd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) → Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) ) ) |
| 9 | 3 8 | biimtrrid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ∧ Fun ◡ ( 𝐹 ↾ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) → Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) ) ) |
| 10 | 2 9 | mpand | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( Fun ◡ ( 𝐹 ↾ 𝐶 ) → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) → Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) ) ) |
| 11 | 10 | impd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( Fun ◡ ( 𝐹 ↾ 𝐶 ) ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) → Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) ) |
| 12 | simp1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 13 | simp3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐶 ⊆ 𝐴 ) | |
| 14 | eldifi | ⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → 𝑋 ∈ 𝐴 ) | |
| 15 | 14 | snssd | ⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → { 𝑋 } ⊆ 𝐴 ) |
| 16 | 15 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → { 𝑋 } ⊆ 𝐴 ) |
| 17 | 13 16 | unssd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐶 ∪ { 𝑋 } ) ⊆ 𝐴 ) |
| 18 | 12 17 | fssresd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) |
| 19 | 3 | simprbi | ⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → Fun ◡ ( 𝐹 ↾ 𝐶 ) ) |
| 20 | 19 | anim1i | ⊢ ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) → ( Fun ◡ ( 𝐹 ↾ 𝐶 ) ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) |
| 21 | 4 20 | biimtrrdi | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 → ( Fun ◡ ( 𝐹 ↾ 𝐶 ) ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) ) |
| 22 | 5 21 | biimtrrid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ∧ Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) → ( Fun ◡ ( 𝐹 ↾ 𝐶 ) ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) ) |
| 23 | 18 22 | mpand | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) → ( Fun ◡ ( 𝐹 ↾ 𝐶 ) ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) ) |
| 24 | 11 23 | impbid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( Fun ◡ ( 𝐹 ↾ 𝐶 ) ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ↔ Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) ) |