This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertices of a path are distinct (except the first and last vertex), so the restricted vertex function is one-to-one. (Contributed by AV, 2-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pthdifv | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trliswlk | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | 2 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 4 | fz1ssfz0 | ⊢ ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) | |
| 5 | 4 | a1i | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 1 ... ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 6 | 3 5 | fssresd | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 7 | 1 6 | syl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 8 | 7 | anim1i | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 9 | 8 | 3adant3 | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 10 | dfpth2 | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ∧ ( 𝑃 ‘ 0 ) ∉ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) | |
| 11 | df-f1 | ⊢ ( ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ↔ ( ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ Fun ◡ ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) ) ) | |
| 12 | 9 10 11 | 3imtr4i | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝑃 ↾ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) : ( 1 ... ( ♯ ‘ 𝐹 ) ) –1-1→ ( Vtx ‘ 𝐺 ) ) |