This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open set of sequential integers is empty if the bounds are equal or reversed. (Contributed by Alexander van der Vekens, 30-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzon | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ≤ 𝑀 ↔ ( 𝑀 ..^ 𝑁 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2zm | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) | |
| 2 | fzn | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( ( 𝑁 − 1 ) < 𝑀 ↔ ( 𝑀 ... ( 𝑁 − 1 ) ) = ∅ ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 − 1 ) < 𝑀 ↔ ( 𝑀 ... ( 𝑁 − 1 ) ) = ∅ ) ) |
| 4 | zlem1lt | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 ≤ 𝑀 ↔ ( 𝑁 − 1 ) < 𝑀 ) ) | |
| 5 | 4 | ancoms | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ≤ 𝑀 ↔ ( 𝑁 − 1 ) < 𝑀 ) ) |
| 6 | fzoval | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 8 | 7 | eqeq1d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ..^ 𝑁 ) = ∅ ↔ ( 𝑀 ... ( 𝑁 − 1 ) ) = ∅ ) ) |
| 9 | 3 5 8 | 3bitr4d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ≤ 𝑀 ↔ ( 𝑀 ..^ 𝑁 ) = ∅ ) ) |