This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnimapr | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐹 “ { 𝐵 , 𝐶 } ) = { ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐶 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsnfv | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → { ( 𝐹 ‘ 𝐵 ) } = ( 𝐹 “ { 𝐵 } ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → { ( 𝐹 ‘ 𝐵 ) } = ( 𝐹 “ { 𝐵 } ) ) |
| 3 | fnsnfv | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴 ) → { ( 𝐹 ‘ 𝐶 ) } = ( 𝐹 “ { 𝐶 } ) ) | |
| 4 | 3 | 3adant2 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → { ( 𝐹 ‘ 𝐶 ) } = ( 𝐹 “ { 𝐶 } ) ) |
| 5 | 2 4 | uneq12d | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( { ( 𝐹 ‘ 𝐵 ) } ∪ { ( 𝐹 ‘ 𝐶 ) } ) = ( ( 𝐹 “ { 𝐵 } ) ∪ ( 𝐹 “ { 𝐶 } ) ) ) |
| 6 | 5 | eqcomd | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( ( 𝐹 “ { 𝐵 } ) ∪ ( 𝐹 “ { 𝐶 } ) ) = ( { ( 𝐹 ‘ 𝐵 ) } ∪ { ( 𝐹 ‘ 𝐶 ) } ) ) |
| 7 | df-pr | ⊢ { 𝐵 , 𝐶 } = ( { 𝐵 } ∪ { 𝐶 } ) | |
| 8 | 7 | imaeq2i | ⊢ ( 𝐹 “ { 𝐵 , 𝐶 } ) = ( 𝐹 “ ( { 𝐵 } ∪ { 𝐶 } ) ) |
| 9 | imaundi | ⊢ ( 𝐹 “ ( { 𝐵 } ∪ { 𝐶 } ) ) = ( ( 𝐹 “ { 𝐵 } ) ∪ ( 𝐹 “ { 𝐶 } ) ) | |
| 10 | 8 9 | eqtri | ⊢ ( 𝐹 “ { 𝐵 , 𝐶 } ) = ( ( 𝐹 “ { 𝐵 } ) ∪ ( 𝐹 “ { 𝐶 } ) ) |
| 11 | df-pr | ⊢ { ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐶 ) } = ( { ( 𝐹 ‘ 𝐵 ) } ∪ { ( 𝐹 ‘ 𝐶 ) } ) | |
| 12 | 6 10 11 | 3eqtr4g | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐹 “ { 𝐵 , 𝐶 } ) = { ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐶 ) } ) |