This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iccdili.1 | ⊢ 𝐴 ∈ ℝ | |
| iccdili.2 | ⊢ 𝐵 ∈ ℝ | ||
| iccdili.3 | ⊢ 𝑅 ∈ ℝ+ | ||
| iccdili.4 | ⊢ ( 𝐴 · 𝑅 ) = 𝐶 | ||
| iccdili.5 | ⊢ ( 𝐵 · 𝑅 ) = 𝐷 | ||
| Assertion | iccdili | ⊢ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑋 · 𝑅 ) ∈ ( 𝐶 [,] 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccdili.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | iccdili.2 | ⊢ 𝐵 ∈ ℝ | |
| 3 | iccdili.3 | ⊢ 𝑅 ∈ ℝ+ | |
| 4 | iccdili.4 | ⊢ ( 𝐴 · 𝑅 ) = 𝐶 | |
| 5 | iccdili.5 | ⊢ ( 𝐵 · 𝑅 ) = 𝐷 | |
| 6 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 7 | 1 2 6 | mp2an | ⊢ ( 𝐴 [,] 𝐵 ) ⊆ ℝ |
| 8 | 7 | sseli | ⊢ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) → 𝑋 ∈ ℝ ) |
| 9 | 4 5 | iccdil | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+ ) ) → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑋 · 𝑅 ) ∈ ( 𝐶 [,] 𝐷 ) ) ) |
| 10 | 1 2 9 | mpanl12 | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+ ) → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑋 · 𝑅 ) ∈ ( 𝐶 [,] 𝐷 ) ) ) |
| 11 | 3 10 | mpan2 | ⊢ ( 𝑋 ∈ ℝ → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑋 · 𝑅 ) ∈ ( 𝐶 [,] 𝐷 ) ) ) |
| 12 | 11 | biimpd | ⊢ ( 𝑋 ∈ ℝ → ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑋 · 𝑅 ) ∈ ( 𝐶 [,] 𝐷 ) ) ) |
| 13 | 8 12 | mpcom | ⊢ ( 𝑋 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑋 · 𝑅 ) ∈ ( 𝐶 [,] 𝐷 ) ) |