This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A comparison test for convergence of a real infinite series. Exercise 3 of Gleason p. 182. (Contributed by NM, 1-May-2005) (Revised by Mario Carneiro, 24-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvgcmp.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| cvgcmp.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| cvgcmp.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | ||
| cvgcmp.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) | ||
| cvgcmp.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| cvgcmp.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ≤ ( 𝐺 ‘ 𝑘 ) ) | ||
| cvgcmp.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑘 ) ) | ||
| Assertion | cvgcmp | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvgcmp.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | cvgcmp.2 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 3 | cvgcmp.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 4 | cvgcmp.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) | |
| 5 | cvgcmp.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 6 | cvgcmp.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ≤ ( 𝐺 ‘ 𝑘 ) ) | |
| 7 | cvgcmp.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 8 | seqex | ⊢ seq 𝑀 ( + , 𝐺 ) ∈ V | |
| 9 | 8 | a1i | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ V ) |
| 10 | 2 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 11 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 13 | 1 | climcau | ⊢ ( ( 𝑀 ∈ ℤ ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ) |
| 14 | 12 5 13 | syl2anc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ) |
| 15 | 1 12 3 | serfre | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) |
| 16 | 15 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ) |
| 17 | 16 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ) |
| 18 | 17 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ) |
| 19 | 1 | r19.29uz | ⊢ ( ( ∀ 𝑛 ∈ 𝑍 ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ∧ ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ) → ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 20 | 19 | ex | ⊢ ( ∀ 𝑛 ∈ 𝑍 ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ → ( ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 → ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 21 | 18 20 | syl | ⊢ ( 𝜑 → ( ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 → ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 22 | 21 | ralimdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 23 | 14 22 | mpd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 24 | 1 | uztrn2 | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ 𝑍 ) |
| 25 | 2 24 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ 𝑍 ) |
| 26 | 1 12 4 | serfre | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) : 𝑍 ⟶ ℝ ) |
| 27 | 26 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℝ ) |
| 28 | 27 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ) |
| 29 | 25 28 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ) |
| 30 | 29 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ) |
| 32 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → 𝜑 ) | |
| 33 | 32 15 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) |
| 34 | 32 2 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → 𝑁 ∈ 𝑍 ) |
| 35 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 36 | 1 | uztrn2 | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑚 ∈ 𝑍 ) |
| 37 | 34 35 36 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → 𝑚 ∈ 𝑍 ) |
| 38 | 33 37 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ∈ ℝ ) |
| 39 | eqid | ⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) | |
| 40 | 39 | uztrn2 | ⊢ ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 41 | 40 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 42 | 34 41 24 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → 𝑛 ∈ 𝑍 ) |
| 43 | 32 42 16 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ ) |
| 44 | 32 42 27 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℝ ) |
| 45 | 32 26 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → seq 𝑀 ( + , 𝐺 ) : 𝑍 ⟶ ℝ ) |
| 46 | 45 37 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ∈ ℝ ) |
| 47 | 44 46 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ∈ ℝ ) |
| 48 | 37 1 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 49 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) | |
| 50 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 51 | 50 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ 𝑍 ) |
| 52 | fveq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 53 | fveq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 54 | 52 53 | oveq12d | ⊢ ( 𝑚 = 𝑘 → ( ( 𝐹 ‘ 𝑚 ) − ( 𝐺 ‘ 𝑚 ) ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) |
| 55 | eqid | ⊢ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐺 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐺 ‘ 𝑚 ) ) ) | |
| 56 | ovex | ⊢ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ∈ V | |
| 57 | 54 55 56 | fvmpt | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) |
| 58 | 57 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) |
| 59 | 3 4 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 60 | 58 59 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 61 | 32 51 60 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 62 | elfzuz | ⊢ ( 𝑘 ∈ ( ( 𝑚 + 1 ) ... 𝑛 ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) | |
| 63 | peano2uz | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 64 | 35 63 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 65 | 39 | uztrn2 | ⊢ ( ( ( 𝑚 + 1 ) ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 66 | 64 65 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 67 | 1 | uztrn2 | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
| 68 | 2 67 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ 𝑍 ) |
| 69 | 3 4 | subge0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
| 70 | 68 69 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 0 ≤ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
| 71 | 7 70 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) |
| 72 | 68 57 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) |
| 73 | 71 72 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ≤ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ) |
| 74 | 32 66 73 | syl2an2r | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → 0 ≤ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ) |
| 75 | 62 74 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) ∧ 𝑘 ∈ ( ( 𝑚 + 1 ) ... 𝑛 ) ) → 0 ≤ ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ) |
| 76 | 48 49 61 75 | sermono | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) ≤ ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) ) |
| 77 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑚 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 78 | 77 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑚 ) → 𝑘 ∈ 𝑍 ) |
| 79 | 3 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 80 | 32 78 79 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑚 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 81 | 4 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 82 | 32 78 81 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑚 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 83 | 32 78 58 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑚 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) |
| 84 | 48 80 82 83 | sersub | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑚 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) |
| 85 | 42 1 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 86 | 32 51 79 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 87 | 32 51 81 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 88 | 32 51 58 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) |
| 89 | 85 86 87 88 | sersub | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑛 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) ) |
| 90 | 76 84 89 | 3brtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ≤ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) ) |
| 91 | 43 44 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 92 | 38 46 91 | lesubaddd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ≤ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ≤ ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) |
| 93 | 90 92 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ≤ ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) |
| 94 | 43 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ) |
| 95 | 44 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ) |
| 96 | 46 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ∈ ℂ ) |
| 97 | 94 95 96 | subsubd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) |
| 98 | 93 97 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ≤ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) |
| 99 | 38 43 47 98 | lesubd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ≤ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) |
| 100 | 43 38 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ∈ ℝ ) |
| 101 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 102 | 101 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → 𝑥 ∈ ℝ ) |
| 103 | lelttr | ⊢ ( ( ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ∈ ℝ ∧ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ≤ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ∧ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) < 𝑥 ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) < 𝑥 ) ) | |
| 104 | 47 100 102 103 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( ( ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ≤ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ∧ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) < 𝑥 ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) < 𝑥 ) ) |
| 105 | 99 104 | mpand | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) < 𝑥 → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) < 𝑥 ) ) |
| 106 | 32 51 3 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 107 | 62 66 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) ∧ 𝑘 ∈ ( ( 𝑚 + 1 ) ... 𝑛 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 108 | 0red | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ∈ ℝ ) | |
| 109 | 68 4 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 110 | 68 3 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 111 | 108 109 110 6 7 | letrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 112 | 32 107 111 | syl2an2r | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) ∧ 𝑘 ∈ ( ( 𝑚 + 1 ) ... 𝑛 ) ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 113 | 48 49 106 112 | sermono | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ≤ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) |
| 114 | 38 43 113 | abssubge0d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) |
| 115 | 114 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) < 𝑥 ) ) |
| 116 | 32 51 4 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 117 | 32 66 6 | syl2an2r | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑚 + 1 ) ) ) → 0 ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 118 | 62 117 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) ∧ 𝑘 ∈ ( ( 𝑚 + 1 ) ... 𝑛 ) ) → 0 ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 119 | 48 49 116 118 | sermono | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) |
| 120 | 46 44 119 | abssubge0d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) |
| 121 | 120 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) < 𝑥 ) ) |
| 122 | 105 115 121 | 3imtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 123 | 122 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 124 | 123 | adantld | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 125 | 124 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 126 | 125 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ) → ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 127 | 39 | r19.29uz | ⊢ ( ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ∧ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) → ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 128 | 31 126 127 | syl6an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ) → ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 129 | 128 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 130 | 1 39 | cau4 | ⊢ ( 𝑁 ∈ 𝑍 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 131 | 2 130 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 132 | 1 39 | cau4 | ⊢ ( 𝑁 ∈ 𝑍 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 133 | 2 132 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑁 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 134 | 129 131 133 | 3imtr4d | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 135 | 23 134 | mpd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 136 | 1 | uztrn2 | ⊢ ( ( 𝑚 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) → 𝑛 ∈ 𝑍 ) |
| 137 | simpr | ⊢ ( ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) → ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) | |
| 138 | 27 | biantrurd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ↔ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 139 | 137 138 | imbitrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 140 | 136 139 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 141 | 140 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) → ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 142 | 141 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 143 | 142 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) → ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 144 | 143 | ralimdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) ) |
| 145 | 135 144 | mpd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℝ ∧ ( abs ‘ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑚 ) ) ) < 𝑥 ) ) |
| 146 | 1 9 145 | caurcvg2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) |