This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An absolutely convergent series is convergent. (Contributed by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abscvgcvg.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| abscvgcvg.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| abscvgcvg.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) | ||
| abscvgcvg.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) | ||
| abscvgcvg.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| Assertion | abscvgcvg | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscvgcvg.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | abscvgcvg.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | abscvgcvg.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 4 | abscvgcvg.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) | |
| 5 | abscvgcvg.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 6 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 8 | 7 1 | eleqtrrdi | ⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 9 | 4 | abscld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℝ ) |
| 10 | 3 9 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 11 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 12 | 1 | eleq2i | ⊢ ( 𝑘 ∈ 𝑍 ↔ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 13 | 3 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 14 | 9 13 | eqled | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 15 | 10 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 16 | 15 | mullidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 1 · ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 17 | 14 16 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ≤ ( 1 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 18 | 12 17 | sylan2br | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑘 ) ) ≤ ( 1 · ( 𝐹 ‘ 𝑘 ) ) ) |
| 19 | 1 8 10 4 5 11 18 | cvgcmpce | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) |