This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zmodid2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 mod 𝑁 ) = 𝑀 ↔ 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 2 | nnrp | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) | |
| 3 | modid2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( 𝑀 mod 𝑁 ) = 𝑀 ↔ ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 mod 𝑁 ) = 𝑀 ↔ ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) |
| 5 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 6 | 0z | ⊢ 0 ∈ ℤ | |
| 7 | elfzm11 | ⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) | |
| 8 | 6 7 | mpan | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) |
| 9 | 3anass | ⊢ ( ( 𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) | |
| 10 | 8 9 | bitrdi | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 𝑀 ∈ ℤ ∧ ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) ) |
| 11 | 5 10 | syl | ⊢ ( 𝑁 ∈ ℕ → ( 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 𝑀 ∈ ℤ ∧ ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) ) |
| 12 | ibar | ⊢ ( 𝑀 ∈ ℤ → ( ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) ) | |
| 13 | 12 | bicomd | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 ∈ ℤ ∧ ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ↔ ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) |
| 14 | 11 13 | sylan9bbr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) |
| 15 | 4 14 | bitr4d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 mod 𝑁 ) = 𝑀 ↔ 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |