This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for crctcshwlkn0 . (Contributed by AV, 12-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcshwlkn0lem.s | |- ( ph -> S e. ( 1 ..^ N ) ) |
|
| crctcshwlkn0lem.q | |- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
||
| crctcshwlkn0lem.h | |- H = ( F cyclShift S ) |
||
| crctcshwlkn0lem.n | |- N = ( # ` F ) |
||
| crctcshwlkn0lem.f | |- ( ph -> F e. Word A ) |
||
| crctcshwlkn0lem.p | |- ( ph -> A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) |
||
| Assertion | crctcshwlkn0lem4 | |- ( ph -> A. j e. ( 0 ..^ ( N - S ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcshwlkn0lem.s | |- ( ph -> S e. ( 1 ..^ N ) ) |
|
| 2 | crctcshwlkn0lem.q | |- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
|
| 3 | crctcshwlkn0lem.h | |- H = ( F cyclShift S ) |
|
| 4 | crctcshwlkn0lem.n | |- N = ( # ` F ) |
|
| 5 | crctcshwlkn0lem.f | |- ( ph -> F e. Word A ) |
|
| 6 | crctcshwlkn0lem.p | |- ( ph -> A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) |
|
| 7 | elfzoelz | |- ( j e. ( 0 ..^ ( N - S ) ) -> j e. ZZ ) |
|
| 8 | 7 | zcnd | |- ( j e. ( 0 ..^ ( N - S ) ) -> j e. CC ) |
| 9 | 8 | adantl | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> j e. CC ) |
| 10 | elfzoelz | |- ( S e. ( 1 ..^ N ) -> S e. ZZ ) |
|
| 11 | 10 | zcnd | |- ( S e. ( 1 ..^ N ) -> S e. CC ) |
| 12 | 11 | adantr | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> S e. CC ) |
| 13 | 1cnd | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> 1 e. CC ) |
|
| 14 | 9 12 13 | add32d | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) |
| 15 | elfzo1 | |- ( S e. ( 1 ..^ N ) <-> ( S e. NN /\ N e. NN /\ S < N ) ) |
|
| 16 | elfzonn0 | |- ( j e. ( 0 ..^ ( N - S ) ) -> j e. NN0 ) |
|
| 17 | nnnn0 | |- ( S e. NN -> S e. NN0 ) |
|
| 18 | nn0addcl | |- ( ( j e. NN0 /\ S e. NN0 ) -> ( j + S ) e. NN0 ) |
|
| 19 | 18 | ex | |- ( j e. NN0 -> ( S e. NN0 -> ( j + S ) e. NN0 ) ) |
| 20 | 16 17 19 | syl2imc | |- ( S e. NN -> ( j e. ( 0 ..^ ( N - S ) ) -> ( j + S ) e. NN0 ) ) |
| 21 | 20 | 3ad2ant1 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( j e. ( 0 ..^ ( N - S ) ) -> ( j + S ) e. NN0 ) ) |
| 22 | 15 21 | sylbi | |- ( S e. ( 1 ..^ N ) -> ( j e. ( 0 ..^ ( N - S ) ) -> ( j + S ) e. NN0 ) ) |
| 23 | 22 | imp | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( j + S ) e. NN0 ) |
| 24 | fzo0ss1 | |- ( 1 ..^ N ) C_ ( 0 ..^ N ) |
|
| 25 | 24 | sseli | |- ( S e. ( 1 ..^ N ) -> S e. ( 0 ..^ N ) ) |
| 26 | elfzo0 | |- ( S e. ( 0 ..^ N ) <-> ( S e. NN0 /\ N e. NN /\ S < N ) ) |
|
| 27 | 26 | simp2bi | |- ( S e. ( 0 ..^ N ) -> N e. NN ) |
| 28 | 25 27 | syl | |- ( S e. ( 1 ..^ N ) -> N e. NN ) |
| 29 | 28 | adantr | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> N e. NN ) |
| 30 | elfzo0 | |- ( j e. ( 0 ..^ ( N - S ) ) <-> ( j e. NN0 /\ ( N - S ) e. NN /\ j < ( N - S ) ) ) |
|
| 31 | nn0re | |- ( j e. NN0 -> j e. RR ) |
|
| 32 | nnre | |- ( S e. NN -> S e. RR ) |
|
| 33 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 34 | 32 33 | anim12i | |- ( ( S e. NN /\ N e. NN ) -> ( S e. RR /\ N e. RR ) ) |
| 35 | 34 | 3adant3 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( S e. RR /\ N e. RR ) ) |
| 36 | 15 35 | sylbi | |- ( S e. ( 1 ..^ N ) -> ( S e. RR /\ N e. RR ) ) |
| 37 | 31 36 | anim12i | |- ( ( j e. NN0 /\ S e. ( 1 ..^ N ) ) -> ( j e. RR /\ ( S e. RR /\ N e. RR ) ) ) |
| 38 | 3anass | |- ( ( j e. RR /\ S e. RR /\ N e. RR ) <-> ( j e. RR /\ ( S e. RR /\ N e. RR ) ) ) |
|
| 39 | 37 38 | sylibr | |- ( ( j e. NN0 /\ S e. ( 1 ..^ N ) ) -> ( j e. RR /\ S e. RR /\ N e. RR ) ) |
| 40 | ltaddsub | |- ( ( j e. RR /\ S e. RR /\ N e. RR ) -> ( ( j + S ) < N <-> j < ( N - S ) ) ) |
|
| 41 | 40 | bicomd | |- ( ( j e. RR /\ S e. RR /\ N e. RR ) -> ( j < ( N - S ) <-> ( j + S ) < N ) ) |
| 42 | 39 41 | syl | |- ( ( j e. NN0 /\ S e. ( 1 ..^ N ) ) -> ( j < ( N - S ) <-> ( j + S ) < N ) ) |
| 43 | 42 | biimpd | |- ( ( j e. NN0 /\ S e. ( 1 ..^ N ) ) -> ( j < ( N - S ) -> ( j + S ) < N ) ) |
| 44 | 43 | ex | |- ( j e. NN0 -> ( S e. ( 1 ..^ N ) -> ( j < ( N - S ) -> ( j + S ) < N ) ) ) |
| 45 | 44 | com23 | |- ( j e. NN0 -> ( j < ( N - S ) -> ( S e. ( 1 ..^ N ) -> ( j + S ) < N ) ) ) |
| 46 | 45 | a1d | |- ( j e. NN0 -> ( ( N - S ) e. NN -> ( j < ( N - S ) -> ( S e. ( 1 ..^ N ) -> ( j + S ) < N ) ) ) ) |
| 47 | 46 | 3imp | |- ( ( j e. NN0 /\ ( N - S ) e. NN /\ j < ( N - S ) ) -> ( S e. ( 1 ..^ N ) -> ( j + S ) < N ) ) |
| 48 | 30 47 | sylbi | |- ( j e. ( 0 ..^ ( N - S ) ) -> ( S e. ( 1 ..^ N ) -> ( j + S ) < N ) ) |
| 49 | 48 | impcom | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( j + S ) < N ) |
| 50 | elfzo0 | |- ( ( j + S ) e. ( 0 ..^ N ) <-> ( ( j + S ) e. NN0 /\ N e. NN /\ ( j + S ) < N ) ) |
|
| 51 | 23 29 49 50 | syl3anbrc | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( j + S ) e. ( 0 ..^ N ) ) |
| 52 | 51 | adantr | |- ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) -> ( j + S ) e. ( 0 ..^ N ) ) |
| 53 | fveq2 | |- ( i = ( j + S ) -> ( P ` i ) = ( P ` ( j + S ) ) ) |
|
| 54 | 53 | adantl | |- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) /\ i = ( j + S ) ) -> ( P ` i ) = ( P ` ( j + S ) ) ) |
| 55 | fvoveq1 | |- ( i = ( j + S ) -> ( P ` ( i + 1 ) ) = ( P ` ( ( j + S ) + 1 ) ) ) |
|
| 56 | simpr | |- ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) -> ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) |
|
| 57 | 56 | fveq2d | |- ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) -> ( P ` ( ( j + S ) + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) ) |
| 58 | 55 57 | sylan9eqr | |- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) /\ i = ( j + S ) ) -> ( P ` ( i + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) ) |
| 59 | 54 58 | eqeq12d | |- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) /\ i = ( j + S ) ) -> ( ( P ` i ) = ( P ` ( i + 1 ) ) <-> ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) ) ) |
| 60 | 2fveq3 | |- ( i = ( j + S ) -> ( I ` ( F ` i ) ) = ( I ` ( F ` ( j + S ) ) ) ) |
|
| 61 | 53 | sneqd | |- ( i = ( j + S ) -> { ( P ` i ) } = { ( P ` ( j + S ) ) } ) |
| 62 | 60 61 | eqeq12d | |- ( i = ( j + S ) -> ( ( I ` ( F ` i ) ) = { ( P ` i ) } <-> ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } ) ) |
| 63 | 62 | adantl | |- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) /\ i = ( j + S ) ) -> ( ( I ` ( F ` i ) ) = { ( P ` i ) } <-> ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } ) ) |
| 64 | 54 58 | preq12d | |- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) /\ i = ( j + S ) ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } ) |
| 65 | 60 | adantl | |- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) /\ i = ( j + S ) ) -> ( I ` ( F ` i ) ) = ( I ` ( F ` ( j + S ) ) ) ) |
| 66 | 64 65 | sseq12d | |- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) /\ i = ( j + S ) ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) <-> { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) |
| 67 | 59 63 66 | ifpbi123d | |- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) /\ i = ( j + S ) ) -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) <-> if- ( ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) , ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } , { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) ) |
| 68 | 52 67 | rspcdv | |- ( ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) /\ ( ( j + S ) + 1 ) = ( ( j + 1 ) + S ) ) -> ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> if- ( ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) , ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } , { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) ) |
| 69 | 14 68 | mpdan | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> if- ( ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) , ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } , { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) ) |
| 70 | 1 69 | sylan | |- ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> if- ( ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) , ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } , { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) ) |
| 71 | 70 | ex | |- ( ph -> ( j e. ( 0 ..^ ( N - S ) ) -> ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> if- ( ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) , ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } , { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) ) ) |
| 72 | 6 71 | mpid | |- ( ph -> ( j e. ( 0 ..^ ( N - S ) ) -> if- ( ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) , ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } , { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) ) |
| 73 | 72 | imp | |- ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> if- ( ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) , ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } , { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) |
| 74 | elfzofz | |- ( j e. ( 0 ..^ ( N - S ) ) -> j e. ( 0 ... ( N - S ) ) ) |
|
| 75 | 1 2 | crctcshwlkn0lem2 | |- ( ( ph /\ j e. ( 0 ... ( N - S ) ) ) -> ( Q ` j ) = ( P ` ( j + S ) ) ) |
| 76 | 74 75 | sylan2 | |- ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( Q ` j ) = ( P ` ( j + S ) ) ) |
| 77 | fzofzp1 | |- ( j e. ( 0 ..^ ( N - S ) ) -> ( j + 1 ) e. ( 0 ... ( N - S ) ) ) |
|
| 78 | 1 2 | crctcshwlkn0lem2 | |- ( ( ph /\ ( j + 1 ) e. ( 0 ... ( N - S ) ) ) -> ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) ) |
| 79 | 77 78 | sylan2 | |- ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) ) |
| 80 | 3 | fveq1i | |- ( H ` j ) = ( ( F cyclShift S ) ` j ) |
| 81 | 5 | adantr | |- ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> F e. Word A ) |
| 82 | 1 10 | syl | |- ( ph -> S e. ZZ ) |
| 83 | 82 | adantr | |- ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> S e. ZZ ) |
| 84 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 85 | 84 | adantl | |- ( ( S e. NN /\ N e. NN ) -> N e. ZZ ) |
| 86 | nnz | |- ( S e. NN -> S e. ZZ ) |
|
| 87 | 86 | adantr | |- ( ( S e. NN /\ N e. NN ) -> S e. ZZ ) |
| 88 | 85 87 | zsubcld | |- ( ( S e. NN /\ N e. NN ) -> ( N - S ) e. ZZ ) |
| 89 | 17 | nn0ge0d | |- ( S e. NN -> 0 <_ S ) |
| 90 | 89 | adantr | |- ( ( S e. NN /\ N e. NN ) -> 0 <_ S ) |
| 91 | subge02 | |- ( ( N e. RR /\ S e. RR ) -> ( 0 <_ S <-> ( N - S ) <_ N ) ) |
|
| 92 | 33 32 91 | syl2anr | |- ( ( S e. NN /\ N e. NN ) -> ( 0 <_ S <-> ( N - S ) <_ N ) ) |
| 93 | 90 92 | mpbid | |- ( ( S e. NN /\ N e. NN ) -> ( N - S ) <_ N ) |
| 94 | 88 85 93 | 3jca | |- ( ( S e. NN /\ N e. NN ) -> ( ( N - S ) e. ZZ /\ N e. ZZ /\ ( N - S ) <_ N ) ) |
| 95 | 94 | 3adant3 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( N - S ) e. ZZ /\ N e. ZZ /\ ( N - S ) <_ N ) ) |
| 96 | 15 95 | sylbi | |- ( S e. ( 1 ..^ N ) -> ( ( N - S ) e. ZZ /\ N e. ZZ /\ ( N - S ) <_ N ) ) |
| 97 | eluz2 | |- ( N e. ( ZZ>= ` ( N - S ) ) <-> ( ( N - S ) e. ZZ /\ N e. ZZ /\ ( N - S ) <_ N ) ) |
|
| 98 | 96 97 | sylibr | |- ( S e. ( 1 ..^ N ) -> N e. ( ZZ>= ` ( N - S ) ) ) |
| 99 | fzoss2 | |- ( N e. ( ZZ>= ` ( N - S ) ) -> ( 0 ..^ ( N - S ) ) C_ ( 0 ..^ N ) ) |
|
| 100 | 1 98 99 | 3syl | |- ( ph -> ( 0 ..^ ( N - S ) ) C_ ( 0 ..^ N ) ) |
| 101 | 100 | sselda | |- ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> j e. ( 0 ..^ N ) ) |
| 102 | 4 | oveq2i | |- ( 0 ..^ N ) = ( 0 ..^ ( # ` F ) ) |
| 103 | 101 102 | eleqtrdi | |- ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> j e. ( 0 ..^ ( # ` F ) ) ) |
| 104 | cshwidxmod | |- ( ( F e. Word A /\ S e. ZZ /\ j e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) |
|
| 105 | 81 83 103 104 | syl3anc | |- ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) |
| 106 | 4 | eqcomi | |- ( # ` F ) = N |
| 107 | 106 | oveq2i | |- ( ( j + S ) mod ( # ` F ) ) = ( ( j + S ) mod N ) |
| 108 | 21 | imp | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( j + S ) e. NN0 ) |
| 109 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 110 | 109 | 3ad2ant2 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( N - 1 ) e. NN0 ) |
| 111 | 110 | adantr | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( N - 1 ) e. NN0 ) |
| 112 | 31 35 | anim12i | |- ( ( j e. NN0 /\ ( S e. NN /\ N e. NN /\ S < N ) ) -> ( j e. RR /\ ( S e. RR /\ N e. RR ) ) ) |
| 113 | 112 38 | sylibr | |- ( ( j e. NN0 /\ ( S e. NN /\ N e. NN /\ S < N ) ) -> ( j e. RR /\ S e. RR /\ N e. RR ) ) |
| 114 | 113 41 | syl | |- ( ( j e. NN0 /\ ( S e. NN /\ N e. NN /\ S < N ) ) -> ( j < ( N - S ) <-> ( j + S ) < N ) ) |
| 115 | 17 | 3ad2ant1 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> S e. NN0 ) |
| 116 | 115 18 | sylan2 | |- ( ( j e. NN0 /\ ( S e. NN /\ N e. NN /\ S < N ) ) -> ( j + S ) e. NN0 ) |
| 117 | 116 | nn0zd | |- ( ( j e. NN0 /\ ( S e. NN /\ N e. NN /\ S < N ) ) -> ( j + S ) e. ZZ ) |
| 118 | 84 | 3ad2ant2 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> N e. ZZ ) |
| 119 | 118 | adantl | |- ( ( j e. NN0 /\ ( S e. NN /\ N e. NN /\ S < N ) ) -> N e. ZZ ) |
| 120 | zltlem1 | |- ( ( ( j + S ) e. ZZ /\ N e. ZZ ) -> ( ( j + S ) < N <-> ( j + S ) <_ ( N - 1 ) ) ) |
|
| 121 | 117 119 120 | syl2anc | |- ( ( j e. NN0 /\ ( S e. NN /\ N e. NN /\ S < N ) ) -> ( ( j + S ) < N <-> ( j + S ) <_ ( N - 1 ) ) ) |
| 122 | 121 | biimpd | |- ( ( j e. NN0 /\ ( S e. NN /\ N e. NN /\ S < N ) ) -> ( ( j + S ) < N -> ( j + S ) <_ ( N - 1 ) ) ) |
| 123 | 114 122 | sylbid | |- ( ( j e. NN0 /\ ( S e. NN /\ N e. NN /\ S < N ) ) -> ( j < ( N - S ) -> ( j + S ) <_ ( N - 1 ) ) ) |
| 124 | 123 | impancom | |- ( ( j e. NN0 /\ j < ( N - S ) ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( j + S ) <_ ( N - 1 ) ) ) |
| 125 | 124 | 3adant2 | |- ( ( j e. NN0 /\ ( N - S ) e. NN /\ j < ( N - S ) ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( j + S ) <_ ( N - 1 ) ) ) |
| 126 | 30 125 | sylbi | |- ( j e. ( 0 ..^ ( N - S ) ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( j + S ) <_ ( N - 1 ) ) ) |
| 127 | 126 | impcom | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( j + S ) <_ ( N - 1 ) ) |
| 128 | 108 111 127 | 3jca | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( ( j + S ) e. NN0 /\ ( N - 1 ) e. NN0 /\ ( j + S ) <_ ( N - 1 ) ) ) |
| 129 | 15 128 | sylanb | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( ( j + S ) e. NN0 /\ ( N - 1 ) e. NN0 /\ ( j + S ) <_ ( N - 1 ) ) ) |
| 130 | elfz2nn0 | |- ( ( j + S ) e. ( 0 ... ( N - 1 ) ) <-> ( ( j + S ) e. NN0 /\ ( N - 1 ) e. NN0 /\ ( j + S ) <_ ( N - 1 ) ) ) |
|
| 131 | 129 130 | sylibr | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( j + S ) e. ( 0 ... ( N - 1 ) ) ) |
| 132 | zaddcl | |- ( ( j e. ZZ /\ S e. ZZ ) -> ( j + S ) e. ZZ ) |
|
| 133 | 7 10 132 | syl2anr | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( j + S ) e. ZZ ) |
| 134 | zmodid2 | |- ( ( ( j + S ) e. ZZ /\ N e. NN ) -> ( ( ( j + S ) mod N ) = ( j + S ) <-> ( j + S ) e. ( 0 ... ( N - 1 ) ) ) ) |
|
| 135 | 133 29 134 | syl2anc | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( ( ( j + S ) mod N ) = ( j + S ) <-> ( j + S ) e. ( 0 ... ( N - 1 ) ) ) ) |
| 136 | 131 135 | mpbird | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( ( j + S ) mod N ) = ( j + S ) ) |
| 137 | 1 136 | sylan | |- ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( ( j + S ) mod N ) = ( j + S ) ) |
| 138 | 107 137 | eqtrid | |- ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( ( j + S ) mod ( # ` F ) ) = ( j + S ) ) |
| 139 | 138 | fveq2d | |- ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( F ` ( ( j + S ) mod ( # ` F ) ) ) = ( F ` ( j + S ) ) ) |
| 140 | 105 139 | eqtrd | |- ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( j + S ) ) ) |
| 141 | 80 140 | eqtrid | |- ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( H ` j ) = ( F ` ( j + S ) ) ) |
| 142 | 141 | fveq2d | |- ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) |
| 143 | simp1 | |- ( ( ( Q ` j ) = ( P ` ( j + S ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) -> ( Q ` j ) = ( P ` ( j + S ) ) ) |
|
| 144 | simp2 | |- ( ( ( Q ` j ) = ( P ` ( j + S ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) -> ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) ) |
|
| 145 | 143 144 | eqeq12d | |- ( ( ( Q ` j ) = ( P ` ( j + S ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) -> ( ( Q ` j ) = ( Q ` ( j + 1 ) ) <-> ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) ) ) |
| 146 | simp3 | |- ( ( ( Q ` j ) = ( P ` ( j + S ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) -> ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) |
|
| 147 | 143 | sneqd | |- ( ( ( Q ` j ) = ( P ` ( j + S ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) -> { ( Q ` j ) } = { ( P ` ( j + S ) ) } ) |
| 148 | 146 147 | eqeq12d | |- ( ( ( Q ` j ) = ( P ` ( j + S ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) -> ( ( I ` ( H ` j ) ) = { ( Q ` j ) } <-> ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } ) ) |
| 149 | 143 144 | preq12d | |- ( ( ( Q ` j ) = ( P ` ( j + S ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) -> { ( Q ` j ) , ( Q ` ( j + 1 ) ) } = { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } ) |
| 150 | 149 146 | sseq12d | |- ( ( ( Q ` j ) = ( P ` ( j + S ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) -> ( { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) <-> { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) |
| 151 | 145 148 150 | ifpbi123d | |- ( ( ( Q ` j ) = ( P ` ( j + S ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( j + 1 ) + S ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( j + S ) ) ) ) -> ( if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> if- ( ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) , ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } , { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) ) |
| 152 | 76 79 142 151 | syl3anc | |- ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> ( if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> if- ( ( P ` ( j + S ) ) = ( P ` ( ( j + 1 ) + S ) ) , ( I ` ( F ` ( j + S ) ) ) = { ( P ` ( j + S ) ) } , { ( P ` ( j + S ) ) , ( P ` ( ( j + 1 ) + S ) ) } C_ ( I ` ( F ` ( j + S ) ) ) ) ) ) |
| 153 | 73 152 | mpbird | |- ( ( ph /\ j e. ( 0 ..^ ( N - S ) ) ) -> if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |
| 154 | 153 | ralrimiva | |- ( ph -> A. j e. ( 0 ..^ ( N - S ) ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |