This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than' relationship between addition and subtraction. (Contributed by NM, 17-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltaddsub | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) < 𝐶 ↔ 𝐴 < ( 𝐶 − 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lesubadd | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐶 − 𝐵 ) ≤ 𝐴 ↔ 𝐶 ≤ ( 𝐴 + 𝐵 ) ) ) | |
| 2 | 1 | 3com13 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶 − 𝐵 ) ≤ 𝐴 ↔ 𝐶 ≤ ( 𝐴 + 𝐵 ) ) ) |
| 3 | resubcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 − 𝐵 ) ∈ ℝ ) | |
| 4 | lenlt | ⊢ ( ( ( 𝐶 − 𝐵 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐶 − 𝐵 ) ≤ 𝐴 ↔ ¬ 𝐴 < ( 𝐶 − 𝐵 ) ) ) | |
| 5 | 3 4 | stoic3 | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐶 − 𝐵 ) ≤ 𝐴 ↔ ¬ 𝐴 < ( 𝐶 − 𝐵 ) ) ) |
| 6 | 5 | 3com13 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶 − 𝐵 ) ≤ 𝐴 ↔ ¬ 𝐴 < ( 𝐶 − 𝐵 ) ) ) |
| 7 | readdcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) | |
| 8 | lenlt | ⊢ ( ( 𝐶 ∈ ℝ ∧ ( 𝐴 + 𝐵 ) ∈ ℝ ) → ( 𝐶 ≤ ( 𝐴 + 𝐵 ) ↔ ¬ ( 𝐴 + 𝐵 ) < 𝐶 ) ) | |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝐶 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐶 ≤ ( 𝐴 + 𝐵 ) ↔ ¬ ( 𝐴 + 𝐵 ) < 𝐶 ) ) |
| 10 | 9 | 3impb | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 ≤ ( 𝐴 + 𝐵 ) ↔ ¬ ( 𝐴 + 𝐵 ) < 𝐶 ) ) |
| 11 | 10 | 3coml | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ≤ ( 𝐴 + 𝐵 ) ↔ ¬ ( 𝐴 + 𝐵 ) < 𝐶 ) ) |
| 12 | 2 6 11 | 3bitr3rd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ¬ ( 𝐴 + 𝐵 ) < 𝐶 ↔ ¬ 𝐴 < ( 𝐶 − 𝐵 ) ) ) |
| 13 | 12 | con4bid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 + 𝐵 ) < 𝐶 ↔ 𝐴 < ( 𝐶 − 𝐵 ) ) ) |