This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The coefficient vector of multiplication in the univariate power series ring. (Contributed by Stefan O'Rear, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1mul2.s | ⊢ 𝑆 = ( PwSer1 ‘ 𝑅 ) | |
| coe1mul2.t | ⊢ ∙ = ( .r ‘ 𝑆 ) | ||
| coe1mul2.u | ⊢ · = ( .r ‘ 𝑅 ) | ||
| coe1mul2.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| Assertion | coe1mul2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐹 ∙ 𝐺 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1mul2.s | ⊢ 𝑆 = ( PwSer1 ‘ 𝑅 ) | |
| 2 | coe1mul2.t | ⊢ ∙ = ( .r ‘ 𝑆 ) | |
| 3 | coe1mul2.u | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | coe1mul2.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 5 | fconst6g | ⊢ ( 𝑘 ∈ ℕ0 → ( 1o × { 𝑘 } ) : 1o ⟶ ℕ0 ) | |
| 6 | nn0ex | ⊢ ℕ0 ∈ V | |
| 7 | 1on | ⊢ 1o ∈ On | |
| 8 | 7 | elexi | ⊢ 1o ∈ V |
| 9 | 6 8 | elmap | ⊢ ( ( 1o × { 𝑘 } ) ∈ ( ℕ0 ↑m 1o ) ↔ ( 1o × { 𝑘 } ) : 1o ⟶ ℕ0 ) |
| 10 | 5 9 | sylibr | ⊢ ( 𝑘 ∈ ℕ0 → ( 1o × { 𝑘 } ) ∈ ( ℕ0 ↑m 1o ) ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 1o × { 𝑘 } ) ∈ ( ℕ0 ↑m 1o ) ) |
| 12 | eqidd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 1o × { 𝑘 } ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 1o × { 𝑘 } ) ) ) | |
| 13 | eqid | ⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) | |
| 14 | 1 4 13 | psr1bas2 | ⊢ 𝐵 = ( Base ‘ ( 1o mPwSer 𝑅 ) ) |
| 15 | 1 13 2 | psr1mulr | ⊢ ∙ = ( .r ‘ ( 1o mPwSer 𝑅 ) ) |
| 16 | psr1baslem | ⊢ ( ℕ0 ↑m 1o ) = { 𝑎 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑎 “ ℕ ) ∈ Fin } | |
| 17 | simp2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐹 ∈ 𝐵 ) | |
| 18 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 ∈ 𝐵 ) | |
| 19 | 13 14 3 15 16 17 18 | psrmulfval | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ∙ 𝐺 ) = ( 𝑏 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) ) ) |
| 20 | breq2 | ⊢ ( 𝑏 = ( 1o × { 𝑘 } ) → ( 𝑑 ∘r ≤ 𝑏 ↔ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) ) ) | |
| 21 | 20 | rabbidv | ⊢ ( 𝑏 = ( 1o × { 𝑘 } ) → { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ 𝑏 } = { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) |
| 22 | fvoveq1 | ⊢ ( 𝑏 = ( 1o × { 𝑘 } ) → ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) = ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) | |
| 23 | 22 | oveq2d | ⊢ ( 𝑏 = ( 1o × { 𝑘 } ) → ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) = ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) ) |
| 24 | 21 23 | mpteq12dv | ⊢ ( 𝑏 = ( 1o × { 𝑘 } ) → ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) = ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) ) ) |
| 25 | 24 | oveq2d | ⊢ ( 𝑏 = ( 1o × { 𝑘 } ) → ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ 𝑏 } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( 𝑏 ∘f − 𝑐 ) ) ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) ) ) ) |
| 26 | 11 12 19 25 | fmptco | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐹 ∙ 𝐺 ) ∘ ( 𝑘 ∈ ℕ0 ↦ ( 1o × { 𝑘 } ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) ) ) ) ) |
| 27 | 1 | psr1ring | ⊢ ( 𝑅 ∈ Ring → 𝑆 ∈ Ring ) |
| 28 | 4 2 | ringcl | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ∙ 𝐺 ) ∈ 𝐵 ) |
| 29 | 27 28 | syl3an1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ∙ 𝐺 ) ∈ 𝐵 ) |
| 30 | eqid | ⊢ ( coe1 ‘ ( 𝐹 ∙ 𝐺 ) ) = ( coe1 ‘ ( 𝐹 ∙ 𝐺 ) ) | |
| 31 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( 1o × { 𝑘 } ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 1o × { 𝑘 } ) ) | |
| 32 | 30 4 1 31 | coe1fval3 | ⊢ ( ( 𝐹 ∙ 𝐺 ) ∈ 𝐵 → ( coe1 ‘ ( 𝐹 ∙ 𝐺 ) ) = ( ( 𝐹 ∙ 𝐺 ) ∘ ( 𝑘 ∈ ℕ0 ↦ ( 1o × { 𝑘 } ) ) ) ) |
| 33 | 29 32 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐹 ∙ 𝐺 ) ) = ( ( 𝐹 ∙ 𝐺 ) ∘ ( 𝑘 ∈ ℕ0 ↦ ( 1o × { 𝑘 } ) ) ) ) |
| 34 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 35 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 36 | simpl1 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) | |
| 37 | ringcmn | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) | |
| 38 | 36 37 | syl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ CMnd ) |
| 39 | fzfi | ⊢ ( 0 ... 𝑘 ) ∈ Fin | |
| 40 | 39 | a1i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 0 ... 𝑘 ) ∈ Fin ) |
| 41 | simpll1 | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → 𝑅 ∈ Ring ) | |
| 42 | simpll2 | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → 𝐹 ∈ 𝐵 ) | |
| 43 | eqid | ⊢ ( coe1 ‘ 𝐹 ) = ( coe1 ‘ 𝐹 ) | |
| 44 | 43 4 1 34 | coe1f2 | ⊢ ( 𝐹 ∈ 𝐵 → ( coe1 ‘ 𝐹 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 45 | 42 44 | syl | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → ( coe1 ‘ 𝐹 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 46 | elfznn0 | ⊢ ( 𝑥 ∈ ( 0 ... 𝑘 ) → 𝑥 ∈ ℕ0 ) | |
| 47 | 46 | adantl | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → 𝑥 ∈ ℕ0 ) |
| 48 | 45 47 | ffvelcdmd | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 49 | simpll3 | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → 𝐺 ∈ 𝐵 ) | |
| 50 | eqid | ⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ 𝐺 ) | |
| 51 | 50 4 1 34 | coe1f2 | ⊢ ( 𝐺 ∈ 𝐵 → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 52 | 49 51 | syl | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
| 53 | fznn0sub | ⊢ ( 𝑥 ∈ ( 0 ... 𝑘 ) → ( 𝑘 − 𝑥 ) ∈ ℕ0 ) | |
| 54 | 53 | adantl | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 − 𝑥 ) ∈ ℕ0 ) |
| 55 | 52 54 | ffvelcdmd | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 56 | 34 3 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 57 | 41 48 55 56 | syl3anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑥 ∈ ( 0 ... 𝑘 ) ) → ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 58 | 57 | fmpttd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) : ( 0 ... 𝑘 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 59 | 39 | elexi | ⊢ ( 0 ... 𝑘 ) ∈ V |
| 60 | 59 | mptex | ⊢ ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ∈ V |
| 61 | funmpt | ⊢ Fun ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) | |
| 62 | fvex | ⊢ ( 0g ‘ 𝑅 ) ∈ V | |
| 63 | 60 61 62 | 3pm3.2i | ⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ∈ V ∧ Fun ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) |
| 64 | suppssdm | ⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ dom ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) | |
| 65 | eqid | ⊢ ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) | |
| 66 | 65 | dmmptss | ⊢ dom ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ⊆ ( 0 ... 𝑘 ) |
| 67 | 64 66 | sstri | ⊢ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( 0 ... 𝑘 ) |
| 68 | 39 67 | pm3.2i | ⊢ ( ( 0 ... 𝑘 ) ∈ Fin ∧ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( 0 ... 𝑘 ) ) |
| 69 | suppssfifsupp | ⊢ ( ( ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ∈ V ∧ Fun ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ∧ ( ( 0 ... 𝑘 ) ∈ Fin ∧ ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ ( 0 ... 𝑘 ) ) ) → ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) | |
| 70 | 63 68 69 | mp2an | ⊢ ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) |
| 71 | 70 | a1i | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 72 | eqid | ⊢ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } = { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } | |
| 73 | 72 | coe1mul2lem2 | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( 𝑐 ‘ ∅ ) ) : { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } –1-1-onto→ ( 0 ... 𝑘 ) ) |
| 74 | 73 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( 𝑐 ‘ ∅ ) ) : { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } –1-1-onto→ ( 0 ... 𝑘 ) ) |
| 75 | 34 35 38 40 58 71 74 | gsumf1o | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 Σg ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ) = ( 𝑅 Σg ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( 𝑐 ‘ ∅ ) ) ) ) ) |
| 76 | breq1 | ⊢ ( 𝑑 = 𝑐 → ( 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) ↔ 𝑐 ∘r ≤ ( 1o × { 𝑘 } ) ) ) | |
| 77 | 76 | elrab | ⊢ ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↔ ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ∧ 𝑐 ∘r ≤ ( 1o × { 𝑘 } ) ) ) |
| 78 | 77 | simprbi | ⊢ ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } → 𝑐 ∘r ≤ ( 1o × { 𝑘 } ) ) |
| 79 | 78 | adantl | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → 𝑐 ∘r ≤ ( 1o × { 𝑘 } ) ) |
| 80 | simplr | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → 𝑘 ∈ ℕ0 ) | |
| 81 | elrabi | ⊢ ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } → 𝑐 ∈ ( ℕ0 ↑m 1o ) ) | |
| 82 | 81 | adantl | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → 𝑐 ∈ ( ℕ0 ↑m 1o ) ) |
| 83 | coe1mul2lem1 | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑐 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝑐 ∘r ≤ ( 1o × { 𝑘 } ) ↔ ( 𝑐 ‘ ∅ ) ∈ ( 0 ... 𝑘 ) ) ) | |
| 84 | 80 82 83 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( 𝑐 ∘r ≤ ( 1o × { 𝑘 } ) ↔ ( 𝑐 ‘ ∅ ) ∈ ( 0 ... 𝑘 ) ) ) |
| 85 | 79 84 | mpbid | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( 𝑐 ‘ ∅ ) ∈ ( 0 ... 𝑘 ) ) |
| 86 | eqidd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( 𝑐 ‘ ∅ ) ) = ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( 𝑐 ‘ ∅ ) ) ) | |
| 87 | eqidd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ) | |
| 88 | fveq2 | ⊢ ( 𝑥 = ( 𝑐 ‘ ∅ ) → ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) = ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) ) ) | |
| 89 | oveq2 | ⊢ ( 𝑥 = ( 𝑐 ‘ ∅ ) → ( 𝑘 − 𝑥 ) = ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ) | |
| 90 | 89 | fveq2d | ⊢ ( 𝑥 = ( 𝑐 ‘ ∅ ) → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) = ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ) ) |
| 91 | 88 90 | oveq12d | ⊢ ( 𝑥 = ( 𝑐 ‘ ∅ ) → ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) = ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ) ) ) |
| 92 | 85 86 87 91 | fmptco | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( 𝑐 ‘ ∅ ) ) ) = ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ) ) ) ) |
| 93 | simpll2 | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → 𝐹 ∈ 𝐵 ) | |
| 94 | 43 | fvcoe1 | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝑐 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝐹 ‘ 𝑐 ) = ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) ) ) |
| 95 | 93 82 94 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( 𝐹 ‘ 𝑐 ) = ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) ) ) |
| 96 | df1o2 | ⊢ 1o = { ∅ } | |
| 97 | 0ex | ⊢ ∅ ∈ V | |
| 98 | 96 6 97 | mapsnconst | ⊢ ( 𝑐 ∈ ( ℕ0 ↑m 1o ) → 𝑐 = ( 1o × { ( 𝑐 ‘ ∅ ) } ) ) |
| 99 | 82 98 | syl | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → 𝑐 = ( 1o × { ( 𝑐 ‘ ∅ ) } ) ) |
| 100 | 99 | oveq2d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) = ( ( 1o × { 𝑘 } ) ∘f − ( 1o × { ( 𝑐 ‘ ∅ ) } ) ) ) |
| 101 | 7 | a1i | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → 1o ∈ On ) |
| 102 | vex | ⊢ 𝑘 ∈ V | |
| 103 | 102 | a1i | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → 𝑘 ∈ V ) |
| 104 | fvexd | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( 𝑐 ‘ ∅ ) ∈ V ) | |
| 105 | 101 103 104 | ofc12 | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( ( 1o × { 𝑘 } ) ∘f − ( 1o × { ( 𝑐 ‘ ∅ ) } ) ) = ( 1o × { ( 𝑘 − ( 𝑐 ‘ ∅ ) ) } ) ) |
| 106 | 100 105 | eqtrd | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) = ( 1o × { ( 𝑘 − ( 𝑐 ‘ ∅ ) ) } ) ) |
| 107 | 106 | fveq2d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) = ( 𝐺 ‘ ( 1o × { ( 𝑘 − ( 𝑐 ‘ ∅ ) ) } ) ) ) |
| 108 | simpll3 | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → 𝐺 ∈ 𝐵 ) | |
| 109 | fznn0sub | ⊢ ( ( 𝑐 ‘ ∅ ) ∈ ( 0 ... 𝑘 ) → ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ∈ ℕ0 ) | |
| 110 | 85 109 | syl | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ∈ ℕ0 ) |
| 111 | 50 | coe1fv | ⊢ ( ( 𝐺 ∈ 𝐵 ∧ ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ∈ ℕ0 ) → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ) = ( 𝐺 ‘ ( 1o × { ( 𝑘 − ( 𝑐 ‘ ∅ ) ) } ) ) ) |
| 112 | 108 110 111 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ) = ( 𝐺 ‘ ( 1o × { ( 𝑘 − ( 𝑐 ‘ ∅ ) ) } ) ) ) |
| 113 | 107 112 | eqtr4d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) = ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ) ) |
| 114 | 95 113 | oveq12d | ⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ) → ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) = ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ) ) ) |
| 115 | 114 | mpteq2dva | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) ) = ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝑐 ‘ ∅ ) ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − ( 𝑐 ‘ ∅ ) ) ) ) ) ) |
| 116 | 92 115 | eqtr4d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( 𝑐 ‘ ∅ ) ) ) = ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) ) ) |
| 117 | 116 | oveq2d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 Σg ( ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ∘ ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( 𝑐 ‘ ∅ ) ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) ) ) ) |
| 118 | 75 117 | eqtrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 Σg ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ) = ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) ) ) ) |
| 119 | 118 | mpteq2dva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑐 ∈ { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } ↦ ( ( 𝐹 ‘ 𝑐 ) · ( 𝐺 ‘ ( ( 1o × { 𝑘 } ) ∘f − 𝑐 ) ) ) ) ) ) ) |
| 120 | 26 33 119 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐹 ∙ 𝐺 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ) ) ) |