This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence for coe1mul2 . (Contributed by Stefan O'Rear, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | coe1mul2lem2.h | ⊢ 𝐻 = { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } | |
| Assertion | coe1mul2lem2 | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑐 ∈ 𝐻 ↦ ( 𝑐 ‘ ∅ ) ) : 𝐻 –1-1-onto→ ( 0 ... 𝑘 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1mul2lem2.h | ⊢ 𝐻 = { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } | |
| 2 | df1o2 | ⊢ 1o = { ∅ } | |
| 3 | nn0ex | ⊢ ℕ0 ∈ V | |
| 4 | 0ex | ⊢ ∅ ∈ V | |
| 5 | eqid | ⊢ ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) = ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) | |
| 6 | 2 3 4 5 | mapsnf1o2 | ⊢ ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) : ( ℕ0 ↑m 1o ) –1-1-onto→ ℕ0 |
| 7 | f1of1 | ⊢ ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) : ( ℕ0 ↑m 1o ) –1-1-onto→ ℕ0 → ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) : ( ℕ0 ↑m 1o ) –1-1→ ℕ0 ) | |
| 8 | 6 7 | ax-mp | ⊢ ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) : ( ℕ0 ↑m 1o ) –1-1→ ℕ0 |
| 9 | 1 | ssrab3 | ⊢ 𝐻 ⊆ ( ℕ0 ↑m 1o ) |
| 10 | 9 | a1i | ⊢ ( 𝑘 ∈ ℕ0 → 𝐻 ⊆ ( ℕ0 ↑m 1o ) ) |
| 11 | f1ores | ⊢ ( ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) : ( ℕ0 ↑m 1o ) –1-1→ ℕ0 ∧ 𝐻 ⊆ ( ℕ0 ↑m 1o ) ) → ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) ↾ 𝐻 ) : 𝐻 –1-1-onto→ ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) “ 𝐻 ) ) | |
| 12 | 8 10 11 | sylancr | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) ↾ 𝐻 ) : 𝐻 –1-1-onto→ ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) “ 𝐻 ) ) |
| 13 | coe1mul2lem1 | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑑 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) ↔ ( 𝑑 ‘ ∅ ) ∈ ( 0 ... 𝑘 ) ) ) | |
| 14 | 13 | rabbidva | ⊢ ( 𝑘 ∈ ℕ0 → { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } = { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ ( 𝑑 ‘ ∅ ) ∈ ( 0 ... 𝑘 ) } ) |
| 15 | fveq1 | ⊢ ( 𝑐 = 𝑑 → ( 𝑐 ‘ ∅ ) = ( 𝑑 ‘ ∅ ) ) | |
| 16 | 15 | eleq1d | ⊢ ( 𝑐 = 𝑑 → ( ( 𝑐 ‘ ∅ ) ∈ ( 0 ... 𝑘 ) ↔ ( 𝑑 ‘ ∅ ) ∈ ( 0 ... 𝑘 ) ) ) |
| 17 | 16 | cbvrabv | ⊢ { 𝑐 ∈ ( ℕ0 ↑m 1o ) ∣ ( 𝑐 ‘ ∅ ) ∈ ( 0 ... 𝑘 ) } = { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ ( 𝑑 ‘ ∅ ) ∈ ( 0 ... 𝑘 ) } |
| 18 | 14 17 | eqtr4di | ⊢ ( 𝑘 ∈ ℕ0 → { 𝑑 ∈ ( ℕ0 ↑m 1o ) ∣ 𝑑 ∘r ≤ ( 1o × { 𝑘 } ) } = { 𝑐 ∈ ( ℕ0 ↑m 1o ) ∣ ( 𝑐 ‘ ∅ ) ∈ ( 0 ... 𝑘 ) } ) |
| 19 | 5 | mptpreima | ⊢ ( ◡ ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) “ ( 0 ... 𝑘 ) ) = { 𝑐 ∈ ( ℕ0 ↑m 1o ) ∣ ( 𝑐 ‘ ∅ ) ∈ ( 0 ... 𝑘 ) } |
| 20 | 18 1 19 | 3eqtr4g | ⊢ ( 𝑘 ∈ ℕ0 → 𝐻 = ( ◡ ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) “ ( 0 ... 𝑘 ) ) ) |
| 21 | 20 | imaeq2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) “ 𝐻 ) = ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) “ ( ◡ ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) “ ( 0 ... 𝑘 ) ) ) ) |
| 22 | f1ofo | ⊢ ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) : ( ℕ0 ↑m 1o ) –1-1-onto→ ℕ0 → ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) : ( ℕ0 ↑m 1o ) –onto→ ℕ0 ) | |
| 23 | 6 22 | ax-mp | ⊢ ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) : ( ℕ0 ↑m 1o ) –onto→ ℕ0 |
| 24 | fz0ssnn0 | ⊢ ( 0 ... 𝑘 ) ⊆ ℕ0 | |
| 25 | foimacnv | ⊢ ( ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) : ( ℕ0 ↑m 1o ) –onto→ ℕ0 ∧ ( 0 ... 𝑘 ) ⊆ ℕ0 ) → ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) “ ( ◡ ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) “ ( 0 ... 𝑘 ) ) ) = ( 0 ... 𝑘 ) ) | |
| 26 | 23 24 25 | mp2an | ⊢ ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) “ ( ◡ ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) “ ( 0 ... 𝑘 ) ) ) = ( 0 ... 𝑘 ) |
| 27 | 21 26 | eqtrdi | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) “ 𝐻 ) = ( 0 ... 𝑘 ) ) |
| 28 | 27 | f1oeq3d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) ↾ 𝐻 ) : 𝐻 –1-1-onto→ ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) “ 𝐻 ) ↔ ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) ↾ 𝐻 ) : 𝐻 –1-1-onto→ ( 0 ... 𝑘 ) ) ) |
| 29 | resmpt | ⊢ ( 𝐻 ⊆ ( ℕ0 ↑m 1o ) → ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) ↾ 𝐻 ) = ( 𝑐 ∈ 𝐻 ↦ ( 𝑐 ‘ ∅ ) ) ) | |
| 30 | f1oeq1 | ⊢ ( ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) ↾ 𝐻 ) = ( 𝑐 ∈ 𝐻 ↦ ( 𝑐 ‘ ∅ ) ) → ( ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) ↾ 𝐻 ) : 𝐻 –1-1-onto→ ( 0 ... 𝑘 ) ↔ ( 𝑐 ∈ 𝐻 ↦ ( 𝑐 ‘ ∅ ) ) : 𝐻 –1-1-onto→ ( 0 ... 𝑘 ) ) ) | |
| 31 | 10 29 30 | 3syl | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) ↾ 𝐻 ) : 𝐻 –1-1-onto→ ( 0 ... 𝑘 ) ↔ ( 𝑐 ∈ 𝐻 ↦ ( 𝑐 ‘ ∅ ) ) : 𝐻 –1-1-onto→ ( 0 ... 𝑘 ) ) ) |
| 32 | 28 31 | bitrd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) ↾ 𝐻 ) : 𝐻 –1-1-onto→ ( ( 𝑐 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑐 ‘ ∅ ) ) “ 𝐻 ) ↔ ( 𝑐 ∈ 𝐻 ↦ ( 𝑐 ‘ ∅ ) ) : 𝐻 –1-1-onto→ ( 0 ... 𝑘 ) ) ) |
| 33 | 12 32 | mpbid | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑐 ∈ 𝐻 ↦ ( 𝑐 ‘ ∅ ) ) : 𝐻 –1-1-onto→ ( 0 ... 𝑘 ) ) |