This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapsncnv.s | ⊢ 𝑆 = { 𝑋 } | |
| mapsncnv.b | ⊢ 𝐵 ∈ V | ||
| mapsncnv.x | ⊢ 𝑋 ∈ V | ||
| Assertion | mapsnconst | ⊢ ( 𝐹 ∈ ( 𝐵 ↑m 𝑆 ) → 𝐹 = ( 𝑆 × { ( 𝐹 ‘ 𝑋 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsncnv.s | ⊢ 𝑆 = { 𝑋 } | |
| 2 | mapsncnv.b | ⊢ 𝐵 ∈ V | |
| 3 | mapsncnv.x | ⊢ 𝑋 ∈ V | |
| 4 | snex | ⊢ { 𝑋 } ∈ V | |
| 5 | 2 4 | elmap | ⊢ ( 𝐹 ∈ ( 𝐵 ↑m { 𝑋 } ) ↔ 𝐹 : { 𝑋 } ⟶ 𝐵 ) |
| 6 | 3 | fsn2 | ⊢ ( 𝐹 : { 𝑋 } ⟶ 𝐵 ↔ ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝐹 = { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) ) |
| 7 | 6 | simprbi | ⊢ ( 𝐹 : { 𝑋 } ⟶ 𝐵 → 𝐹 = { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } ) |
| 8 | 1 | xpeq1i | ⊢ ( 𝑆 × { ( 𝐹 ‘ 𝑋 ) } ) = ( { 𝑋 } × { ( 𝐹 ‘ 𝑋 ) } ) |
| 9 | fvex | ⊢ ( 𝐹 ‘ 𝑋 ) ∈ V | |
| 10 | 3 9 | xpsn | ⊢ ( { 𝑋 } × { ( 𝐹 ‘ 𝑋 ) } ) = { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } |
| 11 | 8 10 | eqtr2i | ⊢ { 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 } = ( 𝑆 × { ( 𝐹 ‘ 𝑋 ) } ) |
| 12 | 7 11 | eqtrdi | ⊢ ( 𝐹 : { 𝑋 } ⟶ 𝐵 → 𝐹 = ( 𝑆 × { ( 𝐹 ‘ 𝑋 ) } ) ) |
| 13 | 5 12 | sylbi | ⊢ ( 𝐹 ∈ ( 𝐵 ↑m { 𝑋 } ) → 𝐹 = ( 𝑆 × { ( 𝐹 ‘ 𝑋 ) } ) ) |
| 14 | 1 | oveq2i | ⊢ ( 𝐵 ↑m 𝑆 ) = ( 𝐵 ↑m { 𝑋 } ) |
| 15 | 13 14 | eleq2s | ⊢ ( 𝐹 ∈ ( 𝐵 ↑m 𝑆 ) → 𝐹 = ( 𝑆 × { ( 𝐹 ‘ 𝑋 ) } ) ) |