This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The coefficient vector of multiplication in the univariate polynomial ring. (Contributed by Stefan O'Rear, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1mul.s | ⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) | |
| coe1mul.t | ⊢ ∙ = ( .r ‘ 𝑌 ) | ||
| coe1mul.u | ⊢ · = ( .r ‘ 𝑅 ) | ||
| coe1mul.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| Assertion | coe1mul | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐹 ∙ 𝐺 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1mul.s | ⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) | |
| 2 | coe1mul.t | ⊢ ∙ = ( .r ‘ 𝑌 ) | |
| 3 | coe1mul.u | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | coe1mul.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 5 | id | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) | |
| 6 | 1 4 | ply1bascl | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 7 | 1 4 | ply1bascl | ⊢ ( 𝐺 ∈ 𝐵 → 𝐺 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) |
| 8 | eqid | ⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) | |
| 9 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 10 | eqid | ⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) | |
| 11 | 1 9 2 | ply1mulr | ⊢ ∙ = ( .r ‘ ( 1o mPoly 𝑅 ) ) |
| 12 | 9 10 11 | mplmulr | ⊢ ∙ = ( .r ‘ ( 1o mPwSer 𝑅 ) ) |
| 13 | eqid | ⊢ ( .r ‘ ( PwSer1 ‘ 𝑅 ) ) = ( .r ‘ ( PwSer1 ‘ 𝑅 ) ) | |
| 14 | 8 10 13 | psr1mulr | ⊢ ( .r ‘ ( PwSer1 ‘ 𝑅 ) ) = ( .r ‘ ( 1o mPwSer 𝑅 ) ) |
| 15 | 12 14 | eqtr4i | ⊢ ∙ = ( .r ‘ ( PwSer1 ‘ 𝑅 ) ) |
| 16 | eqid | ⊢ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) = ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) | |
| 17 | 8 15 3 16 | coe1mul2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ∧ 𝐺 ∈ ( Base ‘ ( PwSer1 ‘ 𝑅 ) ) ) → ( coe1 ‘ ( 𝐹 ∙ 𝐺 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ) ) ) |
| 18 | 5 6 7 17 | syl3an | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐹 ∙ 𝐺 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑥 ∈ ( 0 ... 𝑘 ) ↦ ( ( ( coe1 ‘ 𝐹 ) ‘ 𝑥 ) · ( ( coe1 ‘ 𝐺 ) ‘ ( 𝑘 − 𝑥 ) ) ) ) ) ) ) |