This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of univariate power series coefficient vectors. (Contributed by Stefan O'Rear, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1fval.a | ⊢ 𝐴 = ( coe1 ‘ 𝐹 ) | |
| coe1f2.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| coe1f2.p | ⊢ 𝑃 = ( PwSer1 ‘ 𝑅 ) | ||
| coe1f2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| Assertion | coe1f2 | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 : ℕ0 ⟶ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1fval.a | ⊢ 𝐴 = ( coe1 ‘ 𝐹 ) | |
| 2 | coe1f2.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | coe1f2.p | ⊢ 𝑃 = ( PwSer1 ‘ 𝑅 ) | |
| 4 | coe1f2.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 5 | 3 2 4 | psr1basf | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : ( ℕ0 ↑m 1o ) ⟶ 𝐾 ) |
| 6 | df1o2 | ⊢ 1o = { ∅ } | |
| 7 | nn0ex | ⊢ ℕ0 ∈ V | |
| 8 | 0ex | ⊢ ∅ ∈ V | |
| 9 | eqid | ⊢ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) = ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) | |
| 10 | 6 7 8 9 | mapsnf1o3 | ⊢ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) : ℕ0 –1-1-onto→ ( ℕ0 ↑m 1o ) |
| 11 | f1of | ⊢ ( ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) : ℕ0 –1-1-onto→ ( ℕ0 ↑m 1o ) → ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) : ℕ0 ⟶ ( ℕ0 ↑m 1o ) ) | |
| 12 | 10 11 | ax-mp | ⊢ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) : ℕ0 ⟶ ( ℕ0 ↑m 1o ) |
| 13 | fco | ⊢ ( ( 𝐹 : ( ℕ0 ↑m 1o ) ⟶ 𝐾 ∧ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) : ℕ0 ⟶ ( ℕ0 ↑m 1o ) ) → ( 𝐹 ∘ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) : ℕ0 ⟶ 𝐾 ) | |
| 14 | 5 12 13 | sylancl | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝐹 ∘ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) : ℕ0 ⟶ 𝐾 ) |
| 15 | 1 2 3 9 | coe1fval3 | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 = ( 𝐹 ∘ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) ) |
| 16 | 15 | feq1d | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝐴 : ℕ0 ⟶ 𝐾 ↔ ( 𝐹 ∘ ( 𝑥 ∈ ℕ0 ↦ ( 1o × { 𝑥 } ) ) ) : ℕ0 ⟶ 𝐾 ) ) |
| 17 | 14 16 | mpbird | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 : ℕ0 ⟶ 𝐾 ) |