This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function operation on two constant functions. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ofc12.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| ofc12.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| ofc12.3 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| Assertion | ofc12 | ⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f 𝑅 ( 𝐴 × { 𝐶 } ) ) = ( 𝐴 × { ( 𝐵 𝑅 𝐶 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofc12.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | ofc12.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 3 | ofc12.3 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 4 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
| 5 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑋 ) |
| 6 | fconstmpt | ⊢ ( 𝐴 × { 𝐵 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ( 𝐴 × { 𝐵 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 8 | fconstmpt | ⊢ ( 𝐴 × { 𝐶 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) | |
| 9 | 8 | a1i | ⊢ ( 𝜑 → ( 𝐴 × { 𝐶 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 10 | 1 4 5 7 9 | offval2 | ⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f 𝑅 ( 𝐴 × { 𝐶 } ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) ) |
| 11 | fconstmpt | ⊢ ( 𝐴 × { ( 𝐵 𝑅 𝐶 ) } ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 𝑅 𝐶 ) ) | |
| 12 | 10 11 | eqtr4di | ⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f 𝑅 ( 𝐴 × { 𝐶 } ) ) = ( 𝐴 × { ( 𝐵 𝑅 𝐶 ) } ) ) |