This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate power series coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1fval.a | ⊢ 𝐴 = ( coe1 ‘ 𝐹 ) | |
| coe1f2.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| coe1f2.p | ⊢ 𝑃 = ( PwSer1 ‘ 𝑅 ) | ||
| coe1fval3.g | ⊢ 𝐺 = ( 𝑦 ∈ ℕ0 ↦ ( 1o × { 𝑦 } ) ) | ||
| Assertion | coe1fval3 | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 = ( 𝐹 ∘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1fval.a | ⊢ 𝐴 = ( coe1 ‘ 𝐹 ) | |
| 2 | coe1f2.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | coe1f2.p | ⊢ 𝑃 = ( PwSer1 ‘ 𝑅 ) | |
| 4 | coe1fval3.g | ⊢ 𝐺 = ( 𝑦 ∈ ℕ0 ↦ ( 1o × { 𝑦 } ) ) | |
| 5 | 1 | coe1fval | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 = ( 𝑦 ∈ ℕ0 ↦ ( 𝐹 ‘ ( 1o × { 𝑦 } ) ) ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 7 | 3 2 6 | psr1basf | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : ( ℕ0 ↑m 1o ) ⟶ ( Base ‘ 𝑅 ) ) |
| 8 | ssv | ⊢ ( Base ‘ 𝑅 ) ⊆ V | |
| 9 | fss | ⊢ ( ( 𝐹 : ( ℕ0 ↑m 1o ) ⟶ ( Base ‘ 𝑅 ) ∧ ( Base ‘ 𝑅 ) ⊆ V ) → 𝐹 : ( ℕ0 ↑m 1o ) ⟶ V ) | |
| 10 | 7 8 9 | sylancl | ⊢ ( 𝐹 ∈ 𝐵 → 𝐹 : ( ℕ0 ↑m 1o ) ⟶ V ) |
| 11 | fconst6g | ⊢ ( 𝑦 ∈ ℕ0 → ( 1o × { 𝑦 } ) : 1o ⟶ ℕ0 ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝐹 : ( ℕ0 ↑m 1o ) ⟶ V ∧ 𝑦 ∈ ℕ0 ) → ( 1o × { 𝑦 } ) : 1o ⟶ ℕ0 ) |
| 13 | nn0ex | ⊢ ℕ0 ∈ V | |
| 14 | 1oex | ⊢ 1o ∈ V | |
| 15 | 13 14 | elmap | ⊢ ( ( 1o × { 𝑦 } ) ∈ ( ℕ0 ↑m 1o ) ↔ ( 1o × { 𝑦 } ) : 1o ⟶ ℕ0 ) |
| 16 | 12 15 | sylibr | ⊢ ( ( 𝐹 : ( ℕ0 ↑m 1o ) ⟶ V ∧ 𝑦 ∈ ℕ0 ) → ( 1o × { 𝑦 } ) ∈ ( ℕ0 ↑m 1o ) ) |
| 17 | 4 | a1i | ⊢ ( 𝐹 : ( ℕ0 ↑m 1o ) ⟶ V → 𝐺 = ( 𝑦 ∈ ℕ0 ↦ ( 1o × { 𝑦 } ) ) ) |
| 18 | id | ⊢ ( 𝐹 : ( ℕ0 ↑m 1o ) ⟶ V → 𝐹 : ( ℕ0 ↑m 1o ) ⟶ V ) | |
| 19 | 18 | feqmptd | ⊢ ( 𝐹 : ( ℕ0 ↑m 1o ) ⟶ V → 𝐹 = ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 20 | fveq2 | ⊢ ( 𝑥 = ( 1o × { 𝑦 } ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 1o × { 𝑦 } ) ) ) | |
| 21 | 16 17 19 20 | fmptco | ⊢ ( 𝐹 : ( ℕ0 ↑m 1o ) ⟶ V → ( 𝐹 ∘ 𝐺 ) = ( 𝑦 ∈ ℕ0 ↦ ( 𝐹 ‘ ( 1o × { 𝑦 } ) ) ) ) |
| 22 | 10 21 | syl | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝐹 ∘ 𝐺 ) = ( 𝑦 ∈ ℕ0 ↦ ( 𝐹 ‘ ( 1o × { 𝑦 } ) ) ) ) |
| 23 | 5 22 | eqtr4d | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 = ( 𝐹 ∘ 𝐺 ) ) |