This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalence for coe1mul2 . (Contributed by Stefan O'Rear, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coe1mul2lem1 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑋 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝑋 ∘r ≤ ( 1o × { 𝐴 } ) ↔ ( 𝑋 ‘ ∅ ) ∈ ( 0 ... 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on | ⊢ 1o ∈ On | |
| 2 | 1 | a1i | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑋 ∈ ( ℕ0 ↑m 1o ) ) → 1o ∈ On ) |
| 3 | fvexd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑋 ∈ ( ℕ0 ↑m 1o ) ) ∧ 𝑎 ∈ 1o ) → ( 𝑋 ‘ ∅ ) ∈ V ) | |
| 4 | simpll | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑋 ∈ ( ℕ0 ↑m 1o ) ) ∧ 𝑎 ∈ 1o ) → 𝐴 ∈ ℕ0 ) | |
| 5 | df1o2 | ⊢ 1o = { ∅ } | |
| 6 | nn0ex | ⊢ ℕ0 ∈ V | |
| 7 | 0ex | ⊢ ∅ ∈ V | |
| 8 | 5 6 7 | mapsnconst | ⊢ ( 𝑋 ∈ ( ℕ0 ↑m 1o ) → 𝑋 = ( 1o × { ( 𝑋 ‘ ∅ ) } ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑋 ∈ ( ℕ0 ↑m 1o ) ) → 𝑋 = ( 1o × { ( 𝑋 ‘ ∅ ) } ) ) |
| 10 | fconstmpt | ⊢ ( 1o × { ( 𝑋 ‘ ∅ ) } ) = ( 𝑎 ∈ 1o ↦ ( 𝑋 ‘ ∅ ) ) | |
| 11 | 9 10 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑋 ∈ ( ℕ0 ↑m 1o ) ) → 𝑋 = ( 𝑎 ∈ 1o ↦ ( 𝑋 ‘ ∅ ) ) ) |
| 12 | fconstmpt | ⊢ ( 1o × { 𝐴 } ) = ( 𝑎 ∈ 1o ↦ 𝐴 ) | |
| 13 | 12 | a1i | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑋 ∈ ( ℕ0 ↑m 1o ) ) → ( 1o × { 𝐴 } ) = ( 𝑎 ∈ 1o ↦ 𝐴 ) ) |
| 14 | 2 3 4 11 13 | ofrfval2 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑋 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝑋 ∘r ≤ ( 1o × { 𝐴 } ) ↔ ∀ 𝑎 ∈ 1o ( 𝑋 ‘ ∅ ) ≤ 𝐴 ) ) |
| 15 | 1n0 | ⊢ 1o ≠ ∅ | |
| 16 | r19.3rzv | ⊢ ( 1o ≠ ∅ → ( ( 𝑋 ‘ ∅ ) ≤ 𝐴 ↔ ∀ 𝑎 ∈ 1o ( 𝑋 ‘ ∅ ) ≤ 𝐴 ) ) | |
| 17 | 15 16 | mp1i | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑋 ∈ ( ℕ0 ↑m 1o ) ) → ( ( 𝑋 ‘ ∅ ) ≤ 𝐴 ↔ ∀ 𝑎 ∈ 1o ( 𝑋 ‘ ∅ ) ≤ 𝐴 ) ) |
| 18 | elmapi | ⊢ ( 𝑋 ∈ ( ℕ0 ↑m 1o ) → 𝑋 : 1o ⟶ ℕ0 ) | |
| 19 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 20 | ffvelcdm | ⊢ ( ( 𝑋 : 1o ⟶ ℕ0 ∧ ∅ ∈ 1o ) → ( 𝑋 ‘ ∅ ) ∈ ℕ0 ) | |
| 21 | 18 19 20 | sylancl | ⊢ ( 𝑋 ∈ ( ℕ0 ↑m 1o ) → ( 𝑋 ‘ ∅ ) ∈ ℕ0 ) |
| 22 | 21 | adantl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑋 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝑋 ‘ ∅ ) ∈ ℕ0 ) |
| 23 | 22 | biantrurd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑋 ∈ ( ℕ0 ↑m 1o ) ) → ( ( 𝑋 ‘ ∅ ) ≤ 𝐴 ↔ ( ( 𝑋 ‘ ∅ ) ∈ ℕ0 ∧ ( 𝑋 ‘ ∅ ) ≤ 𝐴 ) ) ) |
| 24 | fznn0 | ⊢ ( 𝐴 ∈ ℕ0 → ( ( 𝑋 ‘ ∅ ) ∈ ( 0 ... 𝐴 ) ↔ ( ( 𝑋 ‘ ∅ ) ∈ ℕ0 ∧ ( 𝑋 ‘ ∅ ) ≤ 𝐴 ) ) ) | |
| 25 | 24 | adantr | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑋 ∈ ( ℕ0 ↑m 1o ) ) → ( ( 𝑋 ‘ ∅ ) ∈ ( 0 ... 𝐴 ) ↔ ( ( 𝑋 ‘ ∅ ) ∈ ℕ0 ∧ ( 𝑋 ‘ ∅ ) ≤ 𝐴 ) ) ) |
| 26 | 23 25 | bitr4d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑋 ∈ ( ℕ0 ↑m 1o ) ) → ( ( 𝑋 ‘ ∅ ) ≤ 𝐴 ↔ ( 𝑋 ‘ ∅ ) ∈ ( 0 ... 𝐴 ) ) ) |
| 27 | 14 17 26 | 3bitr2d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑋 ∈ ( ℕ0 ↑m 1o ) ) → ( 𝑋 ∘r ≤ ( 1o × { 𝐴 } ) ↔ ( 𝑋 ‘ ∅ ) ∈ ( 0 ... 𝐴 ) ) ) |