This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrmulr.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrmulr.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrmulr.m | ⊢ · = ( .r ‘ 𝑅 ) | ||
| psrmulr.t | ⊢ ∙ = ( .r ‘ 𝑆 ) | ||
| psrmulr.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| psrmulfval.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| psrmulfval.r | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
| Assertion | psrmulfval | ⊢ ( 𝜑 → ( 𝐹 ∙ 𝐺 ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrmulr.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrmulr.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | psrmulr.m | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | psrmulr.t | ⊢ ∙ = ( .r ‘ 𝑆 ) | |
| 5 | psrmulr.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 6 | psrmulfval.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 7 | psrmulfval.r | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
| 8 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 9 | fveq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) = ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) | |
| 10 | 8 9 | oveqan12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) |
| 11 | 10 | mpteq2dv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) |
| 12 | 11 | oveq2d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) |
| 13 | 12 | mpteq2dv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 14 | 1 2 3 4 5 | psrmulr | ⊢ ∙ = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 15 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 16 | 5 15 | rabex2 | ⊢ 𝐷 ∈ V |
| 17 | 16 | mptex | ⊢ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ∈ V |
| 18 | 13 14 17 | ovmpoa | ⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 ∙ 𝐺 ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 19 | 6 7 18 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∙ 𝐺 ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |