This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Piecewise definition of a continuous function on a real interval. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 5-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpopc.r | ⊢ 𝑅 = ( topGen ‘ ran (,) ) | |
| cnmpopc.m | ⊢ 𝑀 = ( 𝑅 ↾t ( 𝐴 [,] 𝐵 ) ) | ||
| cnmpopc.n | ⊢ 𝑁 = ( 𝑅 ↾t ( 𝐵 [,] 𝐶 ) ) | ||
| cnmpopc.o | ⊢ 𝑂 = ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) | ||
| cnmpopc.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| cnmpopc.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| cnmpopc.b | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ) | ||
| cnmpopc.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| cnmpopc.q | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐵 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐷 = 𝐸 ) | ||
| cnmpopc.d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ 𝐷 ) ∈ ( ( 𝑀 ×t 𝐽 ) Cn 𝐾 ) ) | ||
| cnmpopc.e | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ 𝐸 ) ∈ ( ( 𝑁 ×t 𝐽 ) Cn 𝐾 ) ) | ||
| Assertion | cnmpopc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ∈ ( ( 𝑂 ×t 𝐽 ) Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpopc.r | ⊢ 𝑅 = ( topGen ‘ ran (,) ) | |
| 2 | cnmpopc.m | ⊢ 𝑀 = ( 𝑅 ↾t ( 𝐴 [,] 𝐵 ) ) | |
| 3 | cnmpopc.n | ⊢ 𝑁 = ( 𝑅 ↾t ( 𝐵 [,] 𝐶 ) ) | |
| 4 | cnmpopc.o | ⊢ 𝑂 = ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) | |
| 5 | cnmpopc.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 6 | cnmpopc.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 7 | cnmpopc.b | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ) | |
| 8 | cnmpopc.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 9 | cnmpopc.q | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝐵 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐷 = 𝐸 ) | |
| 10 | cnmpopc.d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ 𝐷 ) ∈ ( ( 𝑀 ×t 𝐽 ) Cn 𝐾 ) ) | |
| 11 | cnmpopc.e | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ 𝐸 ) ∈ ( ( 𝑁 ×t 𝐽 ) Cn 𝐾 ) ) | |
| 12 | eqid | ⊢ ∪ ( 𝑂 ×t 𝐽 ) = ∪ ( 𝑂 ×t 𝐽 ) | |
| 13 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 14 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 [,] 𝐶 ) ⊆ ℝ ) | |
| 15 | 5 6 14 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐶 ) ⊆ ℝ ) |
| 16 | 15 7 | sseldd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 17 | icccld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) | |
| 18 | 5 16 17 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 19 | 1 | fveq2i | ⊢ ( Clsd ‘ 𝑅 ) = ( Clsd ‘ ( topGen ‘ ran (,) ) ) |
| 20 | 18 19 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ 𝑅 ) ) |
| 21 | ssun1 | ⊢ ( 𝐴 [,] 𝐵 ) ⊆ ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) | |
| 22 | iccsplit | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ( 𝐴 [,] 𝐶 ) ) → ( 𝐴 [,] 𝐶 ) = ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) ) | |
| 23 | 5 6 7 22 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐶 ) = ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) ) |
| 24 | 21 23 | sseqtrrid | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐶 ) ) |
| 25 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 26 | 1 | unieqi | ⊢ ∪ 𝑅 = ∪ ( topGen ‘ ran (,) ) |
| 27 | 25 26 | eqtr4i | ⊢ ℝ = ∪ 𝑅 |
| 28 | 27 | restcldi | ⊢ ( ( ( 𝐴 [,] 𝐶 ) ⊆ ℝ ∧ ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ 𝑅 ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐶 ) ) → ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ) ) |
| 29 | 15 20 24 28 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ) ) |
| 30 | 4 | fveq2i | ⊢ ( Clsd ‘ 𝑂 ) = ( Clsd ‘ ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ) |
| 31 | 29 30 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ 𝑂 ) ) |
| 32 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 33 | 8 32 | syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 34 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 35 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 36 | 35 | topcld | ⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ ( Clsd ‘ 𝐽 ) ) |
| 37 | 8 34 36 | 3syl | ⊢ ( 𝜑 → ∪ 𝐽 ∈ ( Clsd ‘ 𝐽 ) ) |
| 38 | 33 37 | eqeltrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
| 39 | txcld | ⊢ ( ( ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ 𝑂 ) ∧ 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ∈ ( Clsd ‘ ( 𝑂 ×t 𝐽 ) ) ) | |
| 40 | 31 38 39 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ∈ ( Clsd ‘ ( 𝑂 ×t 𝐽 ) ) ) |
| 41 | icccld | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 [,] 𝐶 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) | |
| 42 | 16 6 41 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| 43 | 42 19 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ∈ ( Clsd ‘ 𝑅 ) ) |
| 44 | ssun2 | ⊢ ( 𝐵 [,] 𝐶 ) ⊆ ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) | |
| 45 | 44 23 | sseqtrrid | ⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐶 ) ) |
| 46 | 27 | restcldi | ⊢ ( ( ( 𝐴 [,] 𝐶 ) ⊆ ℝ ∧ ( 𝐵 [,] 𝐶 ) ∈ ( Clsd ‘ 𝑅 ) ∧ ( 𝐵 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐶 ) ) → ( 𝐵 [,] 𝐶 ) ∈ ( Clsd ‘ ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ) ) |
| 47 | 15 43 45 46 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ∈ ( Clsd ‘ ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ) ) |
| 48 | 47 30 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ∈ ( Clsd ‘ 𝑂 ) ) |
| 49 | txcld | ⊢ ( ( ( 𝐵 [,] 𝐶 ) ∈ ( Clsd ‘ 𝑂 ) ∧ 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ∈ ( Clsd ‘ ( 𝑂 ×t 𝐽 ) ) ) | |
| 50 | 48 38 49 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ∈ ( Clsd ‘ ( 𝑂 ×t 𝐽 ) ) ) |
| 51 | 23 | xpeq1d | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) = ( ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) × 𝑋 ) ) |
| 52 | xpundir | ⊢ ( ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) × 𝑋 ) = ( ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ∪ ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) | |
| 53 | 51 52 | eqtrdi | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) = ( ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ∪ ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) ) |
| 54 | retopon | ⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) | |
| 55 | 1 54 | eqeltri | ⊢ 𝑅 ∈ ( TopOn ‘ ℝ ) |
| 56 | resttopon | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ ℝ ) ∧ ( 𝐴 [,] 𝐶 ) ⊆ ℝ ) → ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐶 ) ) ) | |
| 57 | 55 15 56 | sylancr | ⊢ ( 𝜑 → ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐶 ) ) ) |
| 58 | 4 57 | eqeltrid | ⊢ ( 𝜑 → 𝑂 ∈ ( TopOn ‘ ( 𝐴 [,] 𝐶 ) ) ) |
| 59 | txtopon | ⊢ ( ( 𝑂 ∈ ( TopOn ‘ ( 𝐴 [,] 𝐶 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝑂 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) ) ) | |
| 60 | 58 8 59 | syl2anc | ⊢ ( 𝜑 → ( 𝑂 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) ) ) |
| 61 | toponuni | ⊢ ( ( 𝑂 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) ) → ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) = ∪ ( 𝑂 ×t 𝐽 ) ) | |
| 62 | 60 61 | syl | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) = ∪ ( 𝑂 ×t 𝐽 ) ) |
| 63 | 53 62 | eqtr3d | ⊢ ( 𝜑 → ( ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ∪ ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) = ∪ ( 𝑂 ×t 𝐽 ) ) |
| 64 | 24 15 | sstrd | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 65 | resttopon | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ ℝ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( 𝑅 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) | |
| 66 | 55 64 65 | sylancr | ⊢ ( 𝜑 → ( 𝑅 ↾t ( 𝐴 [,] 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 67 | 2 66 | eqeltrid | ⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 68 | txtopon | ⊢ ( ( 𝑀 ∈ ( TopOn ‘ ( 𝐴 [,] 𝐵 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝑀 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) ) | |
| 69 | 67 8 68 | syl2anc | ⊢ ( 𝜑 → ( 𝑀 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) ) |
| 70 | cntop2 | ⊢ ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ 𝐷 ) ∈ ( ( 𝑀 ×t 𝐽 ) Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 71 | 10 70 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 72 | toptopon2 | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) | |
| 73 | 71 72 | sylib | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 74 | elicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) | |
| 75 | 5 16 74 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 76 | 75 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 77 | 76 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
| 78 | 77 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑥 ≤ 𝐵 ) |
| 79 | 78 | iftrued | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑦 ∈ 𝑋 ) → if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) = 𝐷 ) |
| 80 | 79 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ 𝐷 ) ) |
| 81 | 80 10 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ∈ ( ( 𝑀 ×t 𝐽 ) Cn 𝐾 ) ) |
| 82 | cnf2 | ⊢ ( ( ( 𝑀 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ∈ ( ( 𝑀 ×t 𝐽 ) Cn 𝐾 ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ⟶ ∪ 𝐾 ) | |
| 83 | 69 73 81 82 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ⟶ ∪ 𝐾 ) |
| 84 | eqid | ⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) | |
| 85 | 84 | fmpo | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ⟶ ∪ 𝐾 ) |
| 86 | 83 85 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ) |
| 87 | 45 15 | sstrd | ⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) |
| 88 | resttopon | ⊢ ( ( 𝑅 ∈ ( TopOn ‘ ℝ ) ∧ ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) → ( 𝑅 ↾t ( 𝐵 [,] 𝐶 ) ) ∈ ( TopOn ‘ ( 𝐵 [,] 𝐶 ) ) ) | |
| 89 | 55 87 88 | sylancr | ⊢ ( 𝜑 → ( 𝑅 ↾t ( 𝐵 [,] 𝐶 ) ) ∈ ( TopOn ‘ ( 𝐵 [,] 𝐶 ) ) ) |
| 90 | 3 89 | eqeltrid | ⊢ ( 𝜑 → 𝑁 ∈ ( TopOn ‘ ( 𝐵 [,] 𝐶 ) ) ) |
| 91 | txtopon | ⊢ ( ( 𝑁 ∈ ( TopOn ‘ ( 𝐵 [,] 𝐶 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝑁 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) ) | |
| 92 | 90 8 91 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) ) |
| 93 | elicc2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) | |
| 94 | 16 6 93 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) ) |
| 95 | 94 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ∧ 𝑥 ≤ 𝐶 ) ) |
| 96 | 95 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝐵 ≤ 𝑥 ) |
| 97 | 96 | biantrud | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → ( 𝑥 ≤ 𝐵 ↔ ( 𝑥 ≤ 𝐵 ∧ 𝐵 ≤ 𝑥 ) ) ) |
| 98 | 95 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝑥 ∈ ℝ ) |
| 99 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝐵 ∈ ℝ ) |
| 100 | 98 99 | letri3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → ( 𝑥 = 𝐵 ↔ ( 𝑥 ≤ 𝐵 ∧ 𝐵 ≤ 𝑥 ) ) ) |
| 101 | 97 100 | bitr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → ( 𝑥 ≤ 𝐵 ↔ 𝑥 = 𝐵 ) ) |
| 102 | 101 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ≤ 𝐵 ↔ 𝑥 = 𝐵 ) ) |
| 103 | 9 | ancom2s | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 = 𝐵 ) ) → 𝐷 = 𝐸 ) |
| 104 | 103 | ifeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 = 𝐵 ) ) → if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) = if ( 𝑥 ≤ 𝐵 , 𝐸 , 𝐸 ) ) |
| 105 | ifid | ⊢ if ( 𝑥 ≤ 𝐵 , 𝐸 , 𝐸 ) = 𝐸 | |
| 106 | 104 105 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 = 𝐵 ) ) → if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) = 𝐸 ) |
| 107 | 106 | expr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 = 𝐵 → if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) = 𝐸 ) ) |
| 108 | 107 | 3adant2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 = 𝐵 → if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) = 𝐸 ) ) |
| 109 | 102 108 | sylbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ≤ 𝐵 → if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) = 𝐸 ) ) |
| 110 | iffalse | ⊢ ( ¬ 𝑥 ≤ 𝐵 → if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) = 𝐸 ) | |
| 111 | 109 110 | pm2.61d1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ∧ 𝑦 ∈ 𝑋 ) → if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) = 𝐸 ) |
| 112 | 111 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) = ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ 𝐸 ) ) |
| 113 | 112 11 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ∈ ( ( 𝑁 ×t 𝐽 ) Cn 𝐾 ) ) |
| 114 | cnf2 | ⊢ ( ( ( 𝑁 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ∈ ( ( 𝑁 ×t 𝐽 ) Cn 𝐾 ) ) → ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ⟶ ∪ 𝐾 ) | |
| 115 | 92 73 113 114 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ⟶ ∪ 𝐾 ) |
| 116 | eqid | ⊢ ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) = ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) | |
| 117 | 116 | fmpo | ⊢ ( ∀ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ↔ ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ⟶ ∪ 𝐾 ) |
| 118 | 115 117 | sylibr | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ) |
| 119 | ralun | ⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ∧ ∀ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ) → ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ) | |
| 120 | 86 118 119 | syl2anc | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∪ ( 𝐵 [,] 𝐶 ) ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ) |
| 121 | 120 23 | raleqtrrdv | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ) |
| 122 | eqid | ⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) | |
| 123 | 122 | fmpo | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 [,] 𝐶 ) ∀ 𝑦 ∈ 𝑋 if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ∈ ∪ 𝐾 ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) ⟶ ∪ 𝐾 ) |
| 124 | 121 123 | sylib | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) ⟶ ∪ 𝐾 ) |
| 125 | 62 | feq2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ( ( 𝐴 [,] 𝐶 ) × 𝑋 ) ⟶ ∪ 𝐾 ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ∪ ( 𝑂 ×t 𝐽 ) ⟶ ∪ 𝐾 ) ) |
| 126 | 124 125 | mpbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) : ∪ ( 𝑂 ×t 𝐽 ) ⟶ ∪ 𝐾 ) |
| 127 | ssid | ⊢ 𝑋 ⊆ 𝑋 | |
| 128 | resmpo | ⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐶 ) ∧ 𝑋 ⊆ 𝑋 ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ↾ ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ) | |
| 129 | 24 127 128 | sylancl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ↾ ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ) |
| 130 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 131 | 1 130 | eqeltri | ⊢ 𝑅 ∈ Top |
| 132 | ovex | ⊢ ( 𝐴 [,] 𝐶 ) ∈ V | |
| 133 | resttop | ⊢ ( ( 𝑅 ∈ Top ∧ ( 𝐴 [,] 𝐶 ) ∈ V ) → ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ∈ Top ) | |
| 134 | 131 132 133 | mp2an | ⊢ ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ∈ Top |
| 135 | 4 134 | eqeltri | ⊢ 𝑂 ∈ Top |
| 136 | 135 | a1i | ⊢ ( 𝜑 → 𝑂 ∈ Top ) |
| 137 | ovexd | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ∈ V ) | |
| 138 | txrest | ⊢ ( ( ( 𝑂 ∈ Top ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ ( ( 𝐴 [,] 𝐵 ) ∈ V ∧ 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) = ( ( 𝑂 ↾t ( 𝐴 [,] 𝐵 ) ) ×t ( 𝐽 ↾t 𝑋 ) ) ) | |
| 139 | 136 8 137 38 138 | syl22anc | ⊢ ( 𝜑 → ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) = ( ( 𝑂 ↾t ( 𝐴 [,] 𝐵 ) ) ×t ( 𝐽 ↾t 𝑋 ) ) ) |
| 140 | 131 | a1i | ⊢ ( 𝜑 → 𝑅 ∈ Top ) |
| 141 | ovexd | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐶 ) ∈ V ) | |
| 142 | restabs | ⊢ ( ( 𝑅 ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ( 𝐴 [,] 𝐶 ) ∧ ( 𝐴 [,] 𝐶 ) ∈ V ) → ( ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( 𝑅 ↾t ( 𝐴 [,] 𝐵 ) ) ) | |
| 143 | 140 24 141 142 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( 𝑅 ↾t ( 𝐴 [,] 𝐵 ) ) ) |
| 144 | 4 | oveq1i | ⊢ ( 𝑂 ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ↾t ( 𝐴 [,] 𝐵 ) ) |
| 145 | 143 144 2 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝑂 ↾t ( 𝐴 [,] 𝐵 ) ) = 𝑀 ) |
| 146 | 33 | oveq2d | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝑋 ) = ( 𝐽 ↾t ∪ 𝐽 ) ) |
| 147 | 35 | restid | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ↾t ∪ 𝐽 ) = 𝐽 ) |
| 148 | 8 147 | syl | ⊢ ( 𝜑 → ( 𝐽 ↾t ∪ 𝐽 ) = 𝐽 ) |
| 149 | 146 148 | eqtrd | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝑋 ) = 𝐽 ) |
| 150 | 145 149 | oveq12d | ⊢ ( 𝜑 → ( ( 𝑂 ↾t ( 𝐴 [,] 𝐵 ) ) ×t ( 𝐽 ↾t 𝑋 ) ) = ( 𝑀 ×t 𝐽 ) ) |
| 151 | 139 150 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) = ( 𝑀 ×t 𝐽 ) ) |
| 152 | 151 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) Cn 𝐾 ) = ( ( 𝑀 ×t 𝐽 ) Cn 𝐾 ) ) |
| 153 | 81 129 152 | 3eltr4d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ↾ ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) ∈ ( ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐴 [,] 𝐵 ) × 𝑋 ) ) Cn 𝐾 ) ) |
| 154 | resmpo | ⊢ ( ( ( 𝐵 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐶 ) ∧ 𝑋 ⊆ 𝑋 ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ↾ ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) = ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ) | |
| 155 | 45 127 154 | sylancl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ↾ ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) = ( 𝑥 ∈ ( 𝐵 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ) |
| 156 | ovexd | ⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ∈ V ) | |
| 157 | txrest | ⊢ ( ( ( 𝑂 ∈ Top ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) ∧ ( ( 𝐵 [,] 𝐶 ) ∈ V ∧ 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) ) → ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) = ( ( 𝑂 ↾t ( 𝐵 [,] 𝐶 ) ) ×t ( 𝐽 ↾t 𝑋 ) ) ) | |
| 158 | 136 8 156 38 157 | syl22anc | ⊢ ( 𝜑 → ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) = ( ( 𝑂 ↾t ( 𝐵 [,] 𝐶 ) ) ×t ( 𝐽 ↾t 𝑋 ) ) ) |
| 159 | restabs | ⊢ ( ( 𝑅 ∈ Top ∧ ( 𝐵 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐶 ) ∧ ( 𝐴 [,] 𝐶 ) ∈ V ) → ( ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ↾t ( 𝐵 [,] 𝐶 ) ) = ( 𝑅 ↾t ( 𝐵 [,] 𝐶 ) ) ) | |
| 160 | 140 45 141 159 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ↾t ( 𝐵 [,] 𝐶 ) ) = ( 𝑅 ↾t ( 𝐵 [,] 𝐶 ) ) ) |
| 161 | 4 | oveq1i | ⊢ ( 𝑂 ↾t ( 𝐵 [,] 𝐶 ) ) = ( ( 𝑅 ↾t ( 𝐴 [,] 𝐶 ) ) ↾t ( 𝐵 [,] 𝐶 ) ) |
| 162 | 160 161 3 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝑂 ↾t ( 𝐵 [,] 𝐶 ) ) = 𝑁 ) |
| 163 | 162 149 | oveq12d | ⊢ ( 𝜑 → ( ( 𝑂 ↾t ( 𝐵 [,] 𝐶 ) ) ×t ( 𝐽 ↾t 𝑋 ) ) = ( 𝑁 ×t 𝐽 ) ) |
| 164 | 158 163 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) = ( 𝑁 ×t 𝐽 ) ) |
| 165 | 164 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) Cn 𝐾 ) = ( ( 𝑁 ×t 𝐽 ) Cn 𝐾 ) ) |
| 166 | 113 155 165 | 3eltr4d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ↾ ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) ∈ ( ( ( 𝑂 ×t 𝐽 ) ↾t ( ( 𝐵 [,] 𝐶 ) × 𝑋 ) ) Cn 𝐾 ) ) |
| 167 | 12 13 40 50 63 126 153 166 | paste | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐶 ) , 𝑦 ∈ 𝑋 ↦ if ( 𝑥 ≤ 𝐵 , 𝐷 , 𝐸 ) ) ∈ ( ( 𝑂 ×t 𝐽 ) Cn 𝐾 ) ) |