This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resmpo | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐸 ) ↾ ( 𝐶 × 𝐷 ) ) = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resoprab2 | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵 ) → ( { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐸 ) } ↾ ( 𝐶 × 𝐷 ) ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐸 ) } ) | |
| 2 | df-mpo | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐸 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐸 ) } | |
| 3 | 2 | reseq1i | ⊢ ( ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐸 ) ↾ ( 𝐶 × 𝐷 ) ) = ( { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐸 ) } ↾ ( 𝐶 × 𝐷 ) ) |
| 4 | df-mpo | ⊢ ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝐸 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑧 = 𝐸 ) } | |
| 5 | 1 3 4 | 3eqtr4g | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐸 ) ↾ ( 𝐶 × 𝐷 ) ) = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) |