This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Piecewise definition of a continuous function on a real interval. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 5-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpopc.r | |- R = ( topGen ` ran (,) ) |
|
| cnmpopc.m | |- M = ( R |`t ( A [,] B ) ) |
||
| cnmpopc.n | |- N = ( R |`t ( B [,] C ) ) |
||
| cnmpopc.o | |- O = ( R |`t ( A [,] C ) ) |
||
| cnmpopc.a | |- ( ph -> A e. RR ) |
||
| cnmpopc.c | |- ( ph -> C e. RR ) |
||
| cnmpopc.b | |- ( ph -> B e. ( A [,] C ) ) |
||
| cnmpopc.j | |- ( ph -> J e. ( TopOn ` X ) ) |
||
| cnmpopc.q | |- ( ( ph /\ ( x = B /\ y e. X ) ) -> D = E ) |
||
| cnmpopc.d | |- ( ph -> ( x e. ( A [,] B ) , y e. X |-> D ) e. ( ( M tX J ) Cn K ) ) |
||
| cnmpopc.e | |- ( ph -> ( x e. ( B [,] C ) , y e. X |-> E ) e. ( ( N tX J ) Cn K ) ) |
||
| Assertion | cnmpopc | |- ( ph -> ( x e. ( A [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) e. ( ( O tX J ) Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpopc.r | |- R = ( topGen ` ran (,) ) |
|
| 2 | cnmpopc.m | |- M = ( R |`t ( A [,] B ) ) |
|
| 3 | cnmpopc.n | |- N = ( R |`t ( B [,] C ) ) |
|
| 4 | cnmpopc.o | |- O = ( R |`t ( A [,] C ) ) |
|
| 5 | cnmpopc.a | |- ( ph -> A e. RR ) |
|
| 6 | cnmpopc.c | |- ( ph -> C e. RR ) |
|
| 7 | cnmpopc.b | |- ( ph -> B e. ( A [,] C ) ) |
|
| 8 | cnmpopc.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 9 | cnmpopc.q | |- ( ( ph /\ ( x = B /\ y e. X ) ) -> D = E ) |
|
| 10 | cnmpopc.d | |- ( ph -> ( x e. ( A [,] B ) , y e. X |-> D ) e. ( ( M tX J ) Cn K ) ) |
|
| 11 | cnmpopc.e | |- ( ph -> ( x e. ( B [,] C ) , y e. X |-> E ) e. ( ( N tX J ) Cn K ) ) |
|
| 12 | eqid | |- U. ( O tX J ) = U. ( O tX J ) |
|
| 13 | eqid | |- U. K = U. K |
|
| 14 | iccssre | |- ( ( A e. RR /\ C e. RR ) -> ( A [,] C ) C_ RR ) |
|
| 15 | 5 6 14 | syl2anc | |- ( ph -> ( A [,] C ) C_ RR ) |
| 16 | 15 7 | sseldd | |- ( ph -> B e. RR ) |
| 17 | icccld | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
|
| 18 | 5 16 17 | syl2anc | |- ( ph -> ( A [,] B ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| 19 | 1 | fveq2i | |- ( Clsd ` R ) = ( Clsd ` ( topGen ` ran (,) ) ) |
| 20 | 18 19 | eleqtrrdi | |- ( ph -> ( A [,] B ) e. ( Clsd ` R ) ) |
| 21 | ssun1 | |- ( A [,] B ) C_ ( ( A [,] B ) u. ( B [,] C ) ) |
|
| 22 | iccsplit | |- ( ( A e. RR /\ C e. RR /\ B e. ( A [,] C ) ) -> ( A [,] C ) = ( ( A [,] B ) u. ( B [,] C ) ) ) |
|
| 23 | 5 6 7 22 | syl3anc | |- ( ph -> ( A [,] C ) = ( ( A [,] B ) u. ( B [,] C ) ) ) |
| 24 | 21 23 | sseqtrrid | |- ( ph -> ( A [,] B ) C_ ( A [,] C ) ) |
| 25 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 26 | 1 | unieqi | |- U. R = U. ( topGen ` ran (,) ) |
| 27 | 25 26 | eqtr4i | |- RR = U. R |
| 28 | 27 | restcldi | |- ( ( ( A [,] C ) C_ RR /\ ( A [,] B ) e. ( Clsd ` R ) /\ ( A [,] B ) C_ ( A [,] C ) ) -> ( A [,] B ) e. ( Clsd ` ( R |`t ( A [,] C ) ) ) ) |
| 29 | 15 20 24 28 | syl3anc | |- ( ph -> ( A [,] B ) e. ( Clsd ` ( R |`t ( A [,] C ) ) ) ) |
| 30 | 4 | fveq2i | |- ( Clsd ` O ) = ( Clsd ` ( R |`t ( A [,] C ) ) ) |
| 31 | 29 30 | eleqtrrdi | |- ( ph -> ( A [,] B ) e. ( Clsd ` O ) ) |
| 32 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 33 | 8 32 | syl | |- ( ph -> X = U. J ) |
| 34 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 35 | eqid | |- U. J = U. J |
|
| 36 | 35 | topcld | |- ( J e. Top -> U. J e. ( Clsd ` J ) ) |
| 37 | 8 34 36 | 3syl | |- ( ph -> U. J e. ( Clsd ` J ) ) |
| 38 | 33 37 | eqeltrd | |- ( ph -> X e. ( Clsd ` J ) ) |
| 39 | txcld | |- ( ( ( A [,] B ) e. ( Clsd ` O ) /\ X e. ( Clsd ` J ) ) -> ( ( A [,] B ) X. X ) e. ( Clsd ` ( O tX J ) ) ) |
|
| 40 | 31 38 39 | syl2anc | |- ( ph -> ( ( A [,] B ) X. X ) e. ( Clsd ` ( O tX J ) ) ) |
| 41 | icccld | |- ( ( B e. RR /\ C e. RR ) -> ( B [,] C ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
|
| 42 | 16 6 41 | syl2anc | |- ( ph -> ( B [,] C ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| 43 | 42 19 | eleqtrrdi | |- ( ph -> ( B [,] C ) e. ( Clsd ` R ) ) |
| 44 | ssun2 | |- ( B [,] C ) C_ ( ( A [,] B ) u. ( B [,] C ) ) |
|
| 45 | 44 23 | sseqtrrid | |- ( ph -> ( B [,] C ) C_ ( A [,] C ) ) |
| 46 | 27 | restcldi | |- ( ( ( A [,] C ) C_ RR /\ ( B [,] C ) e. ( Clsd ` R ) /\ ( B [,] C ) C_ ( A [,] C ) ) -> ( B [,] C ) e. ( Clsd ` ( R |`t ( A [,] C ) ) ) ) |
| 47 | 15 43 45 46 | syl3anc | |- ( ph -> ( B [,] C ) e. ( Clsd ` ( R |`t ( A [,] C ) ) ) ) |
| 48 | 47 30 | eleqtrrdi | |- ( ph -> ( B [,] C ) e. ( Clsd ` O ) ) |
| 49 | txcld | |- ( ( ( B [,] C ) e. ( Clsd ` O ) /\ X e. ( Clsd ` J ) ) -> ( ( B [,] C ) X. X ) e. ( Clsd ` ( O tX J ) ) ) |
|
| 50 | 48 38 49 | syl2anc | |- ( ph -> ( ( B [,] C ) X. X ) e. ( Clsd ` ( O tX J ) ) ) |
| 51 | 23 | xpeq1d | |- ( ph -> ( ( A [,] C ) X. X ) = ( ( ( A [,] B ) u. ( B [,] C ) ) X. X ) ) |
| 52 | xpundir | |- ( ( ( A [,] B ) u. ( B [,] C ) ) X. X ) = ( ( ( A [,] B ) X. X ) u. ( ( B [,] C ) X. X ) ) |
|
| 53 | 51 52 | eqtrdi | |- ( ph -> ( ( A [,] C ) X. X ) = ( ( ( A [,] B ) X. X ) u. ( ( B [,] C ) X. X ) ) ) |
| 54 | retopon | |- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
|
| 55 | 1 54 | eqeltri | |- R e. ( TopOn ` RR ) |
| 56 | resttopon | |- ( ( R e. ( TopOn ` RR ) /\ ( A [,] C ) C_ RR ) -> ( R |`t ( A [,] C ) ) e. ( TopOn ` ( A [,] C ) ) ) |
|
| 57 | 55 15 56 | sylancr | |- ( ph -> ( R |`t ( A [,] C ) ) e. ( TopOn ` ( A [,] C ) ) ) |
| 58 | 4 57 | eqeltrid | |- ( ph -> O e. ( TopOn ` ( A [,] C ) ) ) |
| 59 | txtopon | |- ( ( O e. ( TopOn ` ( A [,] C ) ) /\ J e. ( TopOn ` X ) ) -> ( O tX J ) e. ( TopOn ` ( ( A [,] C ) X. X ) ) ) |
|
| 60 | 58 8 59 | syl2anc | |- ( ph -> ( O tX J ) e. ( TopOn ` ( ( A [,] C ) X. X ) ) ) |
| 61 | toponuni | |- ( ( O tX J ) e. ( TopOn ` ( ( A [,] C ) X. X ) ) -> ( ( A [,] C ) X. X ) = U. ( O tX J ) ) |
|
| 62 | 60 61 | syl | |- ( ph -> ( ( A [,] C ) X. X ) = U. ( O tX J ) ) |
| 63 | 53 62 | eqtr3d | |- ( ph -> ( ( ( A [,] B ) X. X ) u. ( ( B [,] C ) X. X ) ) = U. ( O tX J ) ) |
| 64 | 24 15 | sstrd | |- ( ph -> ( A [,] B ) C_ RR ) |
| 65 | resttopon | |- ( ( R e. ( TopOn ` RR ) /\ ( A [,] B ) C_ RR ) -> ( R |`t ( A [,] B ) ) e. ( TopOn ` ( A [,] B ) ) ) |
|
| 66 | 55 64 65 | sylancr | |- ( ph -> ( R |`t ( A [,] B ) ) e. ( TopOn ` ( A [,] B ) ) ) |
| 67 | 2 66 | eqeltrid | |- ( ph -> M e. ( TopOn ` ( A [,] B ) ) ) |
| 68 | txtopon | |- ( ( M e. ( TopOn ` ( A [,] B ) ) /\ J e. ( TopOn ` X ) ) -> ( M tX J ) e. ( TopOn ` ( ( A [,] B ) X. X ) ) ) |
|
| 69 | 67 8 68 | syl2anc | |- ( ph -> ( M tX J ) e. ( TopOn ` ( ( A [,] B ) X. X ) ) ) |
| 70 | cntop2 | |- ( ( x e. ( A [,] B ) , y e. X |-> D ) e. ( ( M tX J ) Cn K ) -> K e. Top ) |
|
| 71 | 10 70 | syl | |- ( ph -> K e. Top ) |
| 72 | toptopon2 | |- ( K e. Top <-> K e. ( TopOn ` U. K ) ) |
|
| 73 | 71 72 | sylib | |- ( ph -> K e. ( TopOn ` U. K ) ) |
| 74 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
|
| 75 | 5 16 74 | syl2anc | |- ( ph -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
| 76 | 75 | biimpa | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) ) |
| 77 | 76 | simp3d | |- ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B ) |
| 78 | 77 | 3adant3 | |- ( ( ph /\ x e. ( A [,] B ) /\ y e. X ) -> x <_ B ) |
| 79 | 78 | iftrued | |- ( ( ph /\ x e. ( A [,] B ) /\ y e. X ) -> if ( x <_ B , D , E ) = D ) |
| 80 | 79 | mpoeq3dva | |- ( ph -> ( x e. ( A [,] B ) , y e. X |-> if ( x <_ B , D , E ) ) = ( x e. ( A [,] B ) , y e. X |-> D ) ) |
| 81 | 80 10 | eqeltrd | |- ( ph -> ( x e. ( A [,] B ) , y e. X |-> if ( x <_ B , D , E ) ) e. ( ( M tX J ) Cn K ) ) |
| 82 | cnf2 | |- ( ( ( M tX J ) e. ( TopOn ` ( ( A [,] B ) X. X ) ) /\ K e. ( TopOn ` U. K ) /\ ( x e. ( A [,] B ) , y e. X |-> if ( x <_ B , D , E ) ) e. ( ( M tX J ) Cn K ) ) -> ( x e. ( A [,] B ) , y e. X |-> if ( x <_ B , D , E ) ) : ( ( A [,] B ) X. X ) --> U. K ) |
|
| 83 | 69 73 81 82 | syl3anc | |- ( ph -> ( x e. ( A [,] B ) , y e. X |-> if ( x <_ B , D , E ) ) : ( ( A [,] B ) X. X ) --> U. K ) |
| 84 | eqid | |- ( x e. ( A [,] B ) , y e. X |-> if ( x <_ B , D , E ) ) = ( x e. ( A [,] B ) , y e. X |-> if ( x <_ B , D , E ) ) |
|
| 85 | 84 | fmpo | |- ( A. x e. ( A [,] B ) A. y e. X if ( x <_ B , D , E ) e. U. K <-> ( x e. ( A [,] B ) , y e. X |-> if ( x <_ B , D , E ) ) : ( ( A [,] B ) X. X ) --> U. K ) |
| 86 | 83 85 | sylibr | |- ( ph -> A. x e. ( A [,] B ) A. y e. X if ( x <_ B , D , E ) e. U. K ) |
| 87 | 45 15 | sstrd | |- ( ph -> ( B [,] C ) C_ RR ) |
| 88 | resttopon | |- ( ( R e. ( TopOn ` RR ) /\ ( B [,] C ) C_ RR ) -> ( R |`t ( B [,] C ) ) e. ( TopOn ` ( B [,] C ) ) ) |
|
| 89 | 55 87 88 | sylancr | |- ( ph -> ( R |`t ( B [,] C ) ) e. ( TopOn ` ( B [,] C ) ) ) |
| 90 | 3 89 | eqeltrid | |- ( ph -> N e. ( TopOn ` ( B [,] C ) ) ) |
| 91 | txtopon | |- ( ( N e. ( TopOn ` ( B [,] C ) ) /\ J e. ( TopOn ` X ) ) -> ( N tX J ) e. ( TopOn ` ( ( B [,] C ) X. X ) ) ) |
|
| 92 | 90 8 91 | syl2anc | |- ( ph -> ( N tX J ) e. ( TopOn ` ( ( B [,] C ) X. X ) ) ) |
| 93 | elicc2 | |- ( ( B e. RR /\ C e. RR ) -> ( x e. ( B [,] C ) <-> ( x e. RR /\ B <_ x /\ x <_ C ) ) ) |
|
| 94 | 16 6 93 | syl2anc | |- ( ph -> ( x e. ( B [,] C ) <-> ( x e. RR /\ B <_ x /\ x <_ C ) ) ) |
| 95 | 94 | biimpa | |- ( ( ph /\ x e. ( B [,] C ) ) -> ( x e. RR /\ B <_ x /\ x <_ C ) ) |
| 96 | 95 | simp2d | |- ( ( ph /\ x e. ( B [,] C ) ) -> B <_ x ) |
| 97 | 96 | biantrud | |- ( ( ph /\ x e. ( B [,] C ) ) -> ( x <_ B <-> ( x <_ B /\ B <_ x ) ) ) |
| 98 | 95 | simp1d | |- ( ( ph /\ x e. ( B [,] C ) ) -> x e. RR ) |
| 99 | 16 | adantr | |- ( ( ph /\ x e. ( B [,] C ) ) -> B e. RR ) |
| 100 | 98 99 | letri3d | |- ( ( ph /\ x e. ( B [,] C ) ) -> ( x = B <-> ( x <_ B /\ B <_ x ) ) ) |
| 101 | 97 100 | bitr4d | |- ( ( ph /\ x e. ( B [,] C ) ) -> ( x <_ B <-> x = B ) ) |
| 102 | 101 | 3adant3 | |- ( ( ph /\ x e. ( B [,] C ) /\ y e. X ) -> ( x <_ B <-> x = B ) ) |
| 103 | 9 | ancom2s | |- ( ( ph /\ ( y e. X /\ x = B ) ) -> D = E ) |
| 104 | 103 | ifeq1d | |- ( ( ph /\ ( y e. X /\ x = B ) ) -> if ( x <_ B , D , E ) = if ( x <_ B , E , E ) ) |
| 105 | ifid | |- if ( x <_ B , E , E ) = E |
|
| 106 | 104 105 | eqtrdi | |- ( ( ph /\ ( y e. X /\ x = B ) ) -> if ( x <_ B , D , E ) = E ) |
| 107 | 106 | expr | |- ( ( ph /\ y e. X ) -> ( x = B -> if ( x <_ B , D , E ) = E ) ) |
| 108 | 107 | 3adant2 | |- ( ( ph /\ x e. ( B [,] C ) /\ y e. X ) -> ( x = B -> if ( x <_ B , D , E ) = E ) ) |
| 109 | 102 108 | sylbid | |- ( ( ph /\ x e. ( B [,] C ) /\ y e. X ) -> ( x <_ B -> if ( x <_ B , D , E ) = E ) ) |
| 110 | iffalse | |- ( -. x <_ B -> if ( x <_ B , D , E ) = E ) |
|
| 111 | 109 110 | pm2.61d1 | |- ( ( ph /\ x e. ( B [,] C ) /\ y e. X ) -> if ( x <_ B , D , E ) = E ) |
| 112 | 111 | mpoeq3dva | |- ( ph -> ( x e. ( B [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) = ( x e. ( B [,] C ) , y e. X |-> E ) ) |
| 113 | 112 11 | eqeltrd | |- ( ph -> ( x e. ( B [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) e. ( ( N tX J ) Cn K ) ) |
| 114 | cnf2 | |- ( ( ( N tX J ) e. ( TopOn ` ( ( B [,] C ) X. X ) ) /\ K e. ( TopOn ` U. K ) /\ ( x e. ( B [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) e. ( ( N tX J ) Cn K ) ) -> ( x e. ( B [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) : ( ( B [,] C ) X. X ) --> U. K ) |
|
| 115 | 92 73 113 114 | syl3anc | |- ( ph -> ( x e. ( B [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) : ( ( B [,] C ) X. X ) --> U. K ) |
| 116 | eqid | |- ( x e. ( B [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) = ( x e. ( B [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) |
|
| 117 | 116 | fmpo | |- ( A. x e. ( B [,] C ) A. y e. X if ( x <_ B , D , E ) e. U. K <-> ( x e. ( B [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) : ( ( B [,] C ) X. X ) --> U. K ) |
| 118 | 115 117 | sylibr | |- ( ph -> A. x e. ( B [,] C ) A. y e. X if ( x <_ B , D , E ) e. U. K ) |
| 119 | ralun | |- ( ( A. x e. ( A [,] B ) A. y e. X if ( x <_ B , D , E ) e. U. K /\ A. x e. ( B [,] C ) A. y e. X if ( x <_ B , D , E ) e. U. K ) -> A. x e. ( ( A [,] B ) u. ( B [,] C ) ) A. y e. X if ( x <_ B , D , E ) e. U. K ) |
|
| 120 | 86 118 119 | syl2anc | |- ( ph -> A. x e. ( ( A [,] B ) u. ( B [,] C ) ) A. y e. X if ( x <_ B , D , E ) e. U. K ) |
| 121 | 120 23 | raleqtrrdv | |- ( ph -> A. x e. ( A [,] C ) A. y e. X if ( x <_ B , D , E ) e. U. K ) |
| 122 | eqid | |- ( x e. ( A [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) = ( x e. ( A [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) |
|
| 123 | 122 | fmpo | |- ( A. x e. ( A [,] C ) A. y e. X if ( x <_ B , D , E ) e. U. K <-> ( x e. ( A [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) : ( ( A [,] C ) X. X ) --> U. K ) |
| 124 | 121 123 | sylib | |- ( ph -> ( x e. ( A [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) : ( ( A [,] C ) X. X ) --> U. K ) |
| 125 | 62 | feq2d | |- ( ph -> ( ( x e. ( A [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) : ( ( A [,] C ) X. X ) --> U. K <-> ( x e. ( A [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) : U. ( O tX J ) --> U. K ) ) |
| 126 | 124 125 | mpbid | |- ( ph -> ( x e. ( A [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) : U. ( O tX J ) --> U. K ) |
| 127 | ssid | |- X C_ X |
|
| 128 | resmpo | |- ( ( ( A [,] B ) C_ ( A [,] C ) /\ X C_ X ) -> ( ( x e. ( A [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) |` ( ( A [,] B ) X. X ) ) = ( x e. ( A [,] B ) , y e. X |-> if ( x <_ B , D , E ) ) ) |
|
| 129 | 24 127 128 | sylancl | |- ( ph -> ( ( x e. ( A [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) |` ( ( A [,] B ) X. X ) ) = ( x e. ( A [,] B ) , y e. X |-> if ( x <_ B , D , E ) ) ) |
| 130 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 131 | 1 130 | eqeltri | |- R e. Top |
| 132 | ovex | |- ( A [,] C ) e. _V |
|
| 133 | resttop | |- ( ( R e. Top /\ ( A [,] C ) e. _V ) -> ( R |`t ( A [,] C ) ) e. Top ) |
|
| 134 | 131 132 133 | mp2an | |- ( R |`t ( A [,] C ) ) e. Top |
| 135 | 4 134 | eqeltri | |- O e. Top |
| 136 | 135 | a1i | |- ( ph -> O e. Top ) |
| 137 | ovexd | |- ( ph -> ( A [,] B ) e. _V ) |
|
| 138 | txrest | |- ( ( ( O e. Top /\ J e. ( TopOn ` X ) ) /\ ( ( A [,] B ) e. _V /\ X e. ( Clsd ` J ) ) ) -> ( ( O tX J ) |`t ( ( A [,] B ) X. X ) ) = ( ( O |`t ( A [,] B ) ) tX ( J |`t X ) ) ) |
|
| 139 | 136 8 137 38 138 | syl22anc | |- ( ph -> ( ( O tX J ) |`t ( ( A [,] B ) X. X ) ) = ( ( O |`t ( A [,] B ) ) tX ( J |`t X ) ) ) |
| 140 | 131 | a1i | |- ( ph -> R e. Top ) |
| 141 | ovexd | |- ( ph -> ( A [,] C ) e. _V ) |
|
| 142 | restabs | |- ( ( R e. Top /\ ( A [,] B ) C_ ( A [,] C ) /\ ( A [,] C ) e. _V ) -> ( ( R |`t ( A [,] C ) ) |`t ( A [,] B ) ) = ( R |`t ( A [,] B ) ) ) |
|
| 143 | 140 24 141 142 | syl3anc | |- ( ph -> ( ( R |`t ( A [,] C ) ) |`t ( A [,] B ) ) = ( R |`t ( A [,] B ) ) ) |
| 144 | 4 | oveq1i | |- ( O |`t ( A [,] B ) ) = ( ( R |`t ( A [,] C ) ) |`t ( A [,] B ) ) |
| 145 | 143 144 2 | 3eqtr4g | |- ( ph -> ( O |`t ( A [,] B ) ) = M ) |
| 146 | 33 | oveq2d | |- ( ph -> ( J |`t X ) = ( J |`t U. J ) ) |
| 147 | 35 | restid | |- ( J e. ( TopOn ` X ) -> ( J |`t U. J ) = J ) |
| 148 | 8 147 | syl | |- ( ph -> ( J |`t U. J ) = J ) |
| 149 | 146 148 | eqtrd | |- ( ph -> ( J |`t X ) = J ) |
| 150 | 145 149 | oveq12d | |- ( ph -> ( ( O |`t ( A [,] B ) ) tX ( J |`t X ) ) = ( M tX J ) ) |
| 151 | 139 150 | eqtrd | |- ( ph -> ( ( O tX J ) |`t ( ( A [,] B ) X. X ) ) = ( M tX J ) ) |
| 152 | 151 | oveq1d | |- ( ph -> ( ( ( O tX J ) |`t ( ( A [,] B ) X. X ) ) Cn K ) = ( ( M tX J ) Cn K ) ) |
| 153 | 81 129 152 | 3eltr4d | |- ( ph -> ( ( x e. ( A [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) |` ( ( A [,] B ) X. X ) ) e. ( ( ( O tX J ) |`t ( ( A [,] B ) X. X ) ) Cn K ) ) |
| 154 | resmpo | |- ( ( ( B [,] C ) C_ ( A [,] C ) /\ X C_ X ) -> ( ( x e. ( A [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) |` ( ( B [,] C ) X. X ) ) = ( x e. ( B [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) ) |
|
| 155 | 45 127 154 | sylancl | |- ( ph -> ( ( x e. ( A [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) |` ( ( B [,] C ) X. X ) ) = ( x e. ( B [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) ) |
| 156 | ovexd | |- ( ph -> ( B [,] C ) e. _V ) |
|
| 157 | txrest | |- ( ( ( O e. Top /\ J e. ( TopOn ` X ) ) /\ ( ( B [,] C ) e. _V /\ X e. ( Clsd ` J ) ) ) -> ( ( O tX J ) |`t ( ( B [,] C ) X. X ) ) = ( ( O |`t ( B [,] C ) ) tX ( J |`t X ) ) ) |
|
| 158 | 136 8 156 38 157 | syl22anc | |- ( ph -> ( ( O tX J ) |`t ( ( B [,] C ) X. X ) ) = ( ( O |`t ( B [,] C ) ) tX ( J |`t X ) ) ) |
| 159 | restabs | |- ( ( R e. Top /\ ( B [,] C ) C_ ( A [,] C ) /\ ( A [,] C ) e. _V ) -> ( ( R |`t ( A [,] C ) ) |`t ( B [,] C ) ) = ( R |`t ( B [,] C ) ) ) |
|
| 160 | 140 45 141 159 | syl3anc | |- ( ph -> ( ( R |`t ( A [,] C ) ) |`t ( B [,] C ) ) = ( R |`t ( B [,] C ) ) ) |
| 161 | 4 | oveq1i | |- ( O |`t ( B [,] C ) ) = ( ( R |`t ( A [,] C ) ) |`t ( B [,] C ) ) |
| 162 | 160 161 3 | 3eqtr4g | |- ( ph -> ( O |`t ( B [,] C ) ) = N ) |
| 163 | 162 149 | oveq12d | |- ( ph -> ( ( O |`t ( B [,] C ) ) tX ( J |`t X ) ) = ( N tX J ) ) |
| 164 | 158 163 | eqtrd | |- ( ph -> ( ( O tX J ) |`t ( ( B [,] C ) X. X ) ) = ( N tX J ) ) |
| 165 | 164 | oveq1d | |- ( ph -> ( ( ( O tX J ) |`t ( ( B [,] C ) X. X ) ) Cn K ) = ( ( N tX J ) Cn K ) ) |
| 166 | 113 155 165 | 3eltr4d | |- ( ph -> ( ( x e. ( A [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) |` ( ( B [,] C ) X. X ) ) e. ( ( ( O tX J ) |`t ( ( B [,] C ) X. X ) ) Cn K ) ) |
| 167 | 12 13 40 50 63 126 153 166 | paste | |- ( ph -> ( x e. ( A [,] C ) , y e. X |-> if ( x <_ B , D , E ) ) e. ( ( O tX J ) Cn K ) ) |