This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two closed sets is closed in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | txcld | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → ( 𝐴 × 𝐵 ) ∈ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 2 | 1 | cldss | ⊢ ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) → 𝐴 ⊆ ∪ 𝑅 ) |
| 3 | eqid | ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 4 | 3 | cldss | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝑆 ) → 𝐵 ⊆ ∪ 𝑆 ) |
| 5 | xpss12 | ⊢ ( ( 𝐴 ⊆ ∪ 𝑅 ∧ 𝐵 ⊆ ∪ 𝑆 ) → ( 𝐴 × 𝐵 ) ⊆ ( ∪ 𝑅 × ∪ 𝑆 ) ) | |
| 6 | 2 4 5 | syl2an | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → ( 𝐴 × 𝐵 ) ⊆ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
| 7 | cldrcl | ⊢ ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) → 𝑅 ∈ Top ) | |
| 8 | cldrcl | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝑆 ) → 𝑆 ∈ Top ) | |
| 9 | 1 3 | txuni | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 10 | 7 8 9 | syl2an | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 11 | 6 10 | sseqtrd | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → ( 𝐴 × 𝐵 ) ⊆ ∪ ( 𝑅 ×t 𝑆 ) ) |
| 12 | difxp | ⊢ ( ( ∪ 𝑅 × ∪ 𝑆 ) ∖ ( 𝐴 × 𝐵 ) ) = ( ( ( ∪ 𝑅 ∖ 𝐴 ) × ∪ 𝑆 ) ∪ ( ∪ 𝑅 × ( ∪ 𝑆 ∖ 𝐵 ) ) ) | |
| 13 | 10 | difeq1d | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → ( ( ∪ 𝑅 × ∪ 𝑆 ) ∖ ( 𝐴 × 𝐵 ) ) = ( ∪ ( 𝑅 ×t 𝑆 ) ∖ ( 𝐴 × 𝐵 ) ) ) |
| 14 | 12 13 | eqtr3id | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → ( ( ( ∪ 𝑅 ∖ 𝐴 ) × ∪ 𝑆 ) ∪ ( ∪ 𝑅 × ( ∪ 𝑆 ∖ 𝐵 ) ) ) = ( ∪ ( 𝑅 ×t 𝑆 ) ∖ ( 𝐴 × 𝐵 ) ) ) |
| 15 | txtop | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) | |
| 16 | 7 8 15 | syl2an | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 17 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → 𝑅 ∈ Top ) |
| 18 | 8 | adantl | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → 𝑆 ∈ Top ) |
| 19 | 1 | cldopn | ⊢ ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) → ( ∪ 𝑅 ∖ 𝐴 ) ∈ 𝑅 ) |
| 20 | 19 | adantr | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → ( ∪ 𝑅 ∖ 𝐴 ) ∈ 𝑅 ) |
| 21 | 3 | topopn | ⊢ ( 𝑆 ∈ Top → ∪ 𝑆 ∈ 𝑆 ) |
| 22 | 18 21 | syl | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → ∪ 𝑆 ∈ 𝑆 ) |
| 23 | txopn | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( ( ∪ 𝑅 ∖ 𝐴 ) ∈ 𝑅 ∧ ∪ 𝑆 ∈ 𝑆 ) ) → ( ( ∪ 𝑅 ∖ 𝐴 ) × ∪ 𝑆 ) ∈ ( 𝑅 ×t 𝑆 ) ) | |
| 24 | 17 18 20 22 23 | syl22anc | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → ( ( ∪ 𝑅 ∖ 𝐴 ) × ∪ 𝑆 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 25 | 1 | topopn | ⊢ ( 𝑅 ∈ Top → ∪ 𝑅 ∈ 𝑅 ) |
| 26 | 17 25 | syl | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → ∪ 𝑅 ∈ 𝑅 ) |
| 27 | 3 | cldopn | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝑆 ) → ( ∪ 𝑆 ∖ 𝐵 ) ∈ 𝑆 ) |
| 28 | 27 | adantl | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → ( ∪ 𝑆 ∖ 𝐵 ) ∈ 𝑆 ) |
| 29 | txopn | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( ∪ 𝑅 ∈ 𝑅 ∧ ( ∪ 𝑆 ∖ 𝐵 ) ∈ 𝑆 ) ) → ( ∪ 𝑅 × ( ∪ 𝑆 ∖ 𝐵 ) ) ∈ ( 𝑅 ×t 𝑆 ) ) | |
| 30 | 17 18 26 28 29 | syl22anc | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → ( ∪ 𝑅 × ( ∪ 𝑆 ∖ 𝐵 ) ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 31 | unopn | ⊢ ( ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ( ( ∪ 𝑅 ∖ 𝐴 ) × ∪ 𝑆 ) ∈ ( 𝑅 ×t 𝑆 ) ∧ ( ∪ 𝑅 × ( ∪ 𝑆 ∖ 𝐵 ) ) ∈ ( 𝑅 ×t 𝑆 ) ) → ( ( ( ∪ 𝑅 ∖ 𝐴 ) × ∪ 𝑆 ) ∪ ( ∪ 𝑅 × ( ∪ 𝑆 ∖ 𝐵 ) ) ) ∈ ( 𝑅 ×t 𝑆 ) ) | |
| 32 | 16 24 30 31 | syl3anc | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → ( ( ( ∪ 𝑅 ∖ 𝐴 ) × ∪ 𝑆 ) ∪ ( ∪ 𝑅 × ( ∪ 𝑆 ∖ 𝐵 ) ) ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 33 | 14 32 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → ( ∪ ( 𝑅 ×t 𝑆 ) ∖ ( 𝐴 × 𝐵 ) ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 34 | eqid | ⊢ ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) | |
| 35 | 34 | iscld | ⊢ ( ( 𝑅 ×t 𝑆 ) ∈ Top → ( ( 𝐴 × 𝐵 ) ∈ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ↔ ( ( 𝐴 × 𝐵 ) ⊆ ∪ ( 𝑅 ×t 𝑆 ) ∧ ( ∪ ( 𝑅 ×t 𝑆 ) ∖ ( 𝐴 × 𝐵 ) ) ∈ ( 𝑅 ×t 𝑆 ) ) ) ) |
| 36 | 16 35 | syl | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → ( ( 𝐴 × 𝐵 ) ∈ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ↔ ( ( 𝐴 × 𝐵 ) ⊆ ∪ ( 𝑅 ×t 𝑆 ) ∧ ( ∪ ( 𝑅 ×t 𝑆 ) ∖ ( 𝐴 × 𝐵 ) ) ∈ ( 𝑅 ×t 𝑆 ) ) ) ) |
| 37 | 11 33 36 | mpbir2and | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝑅 ) ∧ 𝐵 ∈ ( Clsd ‘ 𝑆 ) ) → ( 𝐴 × 𝐵 ) ∈ ( Clsd ‘ ( 𝑅 ×t 𝑆 ) ) ) |