This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed intervals are closed sets of the standard topology on RR . (Contributed by FL, 14-Sep-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | icccld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difreicc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) = ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) | |
| 2 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 3 | iooretop | ⊢ ( -∞ (,) 𝐴 ) ∈ ( topGen ‘ ran (,) ) | |
| 4 | iooretop | ⊢ ( 𝐵 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) | |
| 5 | unopn | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( -∞ (,) 𝐴 ) ∈ ( topGen ‘ ran (,) ) ∧ ( 𝐵 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) ) → ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ∈ ( topGen ‘ ran (,) ) ) | |
| 6 | 2 3 4 5 | mp3an | ⊢ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ∈ ( topGen ‘ ran (,) ) |
| 7 | 1 6 | eqeltrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ∈ ( topGen ‘ ran (,) ) ) |
| 8 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 9 | uniretop | ⊢ ℝ = ∪ ( topGen ‘ ran (,) ) | |
| 10 | 9 | iscld2 | ⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ↔ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ∈ ( topGen ‘ ran (,) ) ) ) |
| 11 | 2 8 10 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ↔ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ∈ ( topGen ‘ ran (,) ) ) ) |
| 12 | 7 11 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ∈ ( Clsd ‘ ( topGen ‘ ran (,) ) ) ) |