This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Pasting lemma. If A and B are closed sets in X with A u. B = X , then any function whose restrictions to A and B are continuous is continuous on all of X . (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paste.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| paste.2 | ⊢ 𝑌 = ∪ 𝐾 | ||
| paste.4 | ⊢ ( 𝜑 → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) | ||
| paste.5 | ⊢ ( 𝜑 → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) | ||
| paste.6 | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) = 𝑋 ) | ||
| paste.7 | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) | ||
| paste.8 | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) | ||
| paste.9 | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) ∈ ( ( 𝐽 ↾t 𝐵 ) Cn 𝐾 ) ) | ||
| Assertion | paste | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paste.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | paste.2 | ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | paste.4 | ⊢ ( 𝜑 → 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 4 | paste.5 | ⊢ ( 𝜑 → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 5 | paste.6 | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) = 𝑋 ) | |
| 6 | paste.7 | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 7 | paste.8 | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) | |
| 8 | paste.9 | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) ∈ ( ( 𝐽 ↾t 𝐵 ) Cn 𝐾 ) ) | |
| 9 | 5 | ineq2d | ⊢ ( 𝜑 → ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( 𝐴 ∪ 𝐵 ) ) = ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝑋 ) ) |
| 10 | indi | ⊢ ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( 𝐴 ∪ 𝐵 ) ) = ( ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝐴 ) ∪ ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝐵 ) ) | |
| 11 | 6 | ffund | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 12 | respreima | ⊢ ( Fun 𝐹 → ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) = ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝐴 ) ) | |
| 13 | respreima | ⊢ ( Fun 𝐹 → ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) = ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝐵 ) ) | |
| 14 | 12 13 | uneq12d | ⊢ ( Fun 𝐹 → ( ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∪ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ) = ( ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝐴 ) ∪ ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝐵 ) ) ) |
| 15 | 11 14 | syl | ⊢ ( 𝜑 → ( ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∪ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ) = ( ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝐴 ) ∪ ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝐵 ) ) ) |
| 16 | 10 15 | eqtr4id | ⊢ ( 𝜑 → ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( 𝐴 ∪ 𝐵 ) ) = ( ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∪ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ) ) |
| 17 | imassrn | ⊢ ( ◡ 𝐹 “ 𝑦 ) ⊆ ran ◡ 𝐹 | |
| 18 | dfdm4 | ⊢ dom 𝐹 = ran ◡ 𝐹 | |
| 19 | fdm | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → dom 𝐹 = 𝑋 ) | |
| 20 | 18 19 | eqtr3id | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ran ◡ 𝐹 = 𝑋 ) |
| 21 | 17 20 | sseqtrid | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ) |
| 22 | 6 21 | syl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ) |
| 23 | dfss2 | ⊢ ( ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ↔ ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝑋 ) = ( ◡ 𝐹 “ 𝑦 ) ) | |
| 24 | 22 23 | sylib | ⊢ ( 𝜑 → ( ( ◡ 𝐹 “ 𝑦 ) ∩ 𝑋 ) = ( ◡ 𝐹 “ 𝑦 ) ) |
| 25 | 9 16 24 | 3eqtr3rd | ⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑦 ) = ( ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∪ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ 𝐹 “ 𝑦 ) = ( ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∪ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ) ) |
| 27 | cnclima | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ) | |
| 28 | 7 27 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ) |
| 29 | restcldr | ⊢ ( ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ) → ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 30 | 3 28 29 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 31 | cnclima | ⊢ ( ( ( 𝐹 ↾ 𝐵 ) ∈ ( ( 𝐽 ↾t 𝐵 ) Cn 𝐾 ) ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐵 ) ) ) | |
| 32 | 8 31 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐵 ) ) ) |
| 33 | restcldr | ⊢ ( ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐵 ) ) ) → ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 34 | 4 32 33 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 35 | uncld | ⊢ ( ( ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ∧ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) → ( ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∪ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 36 | 30 34 35 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ( ◡ ( 𝐹 ↾ 𝐴 ) “ 𝑦 ) ∪ ( ◡ ( 𝐹 ↾ 𝐵 ) “ 𝑦 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 37 | 26 36 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ 𝐹 “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 38 | 37 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 39 | cldrcl | ⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) | |
| 40 | 3 39 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 41 | cntop2 | ⊢ ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 42 | 7 41 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 43 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 44 | 2 | toptopon | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 45 | iscncl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) | |
| 46 | 43 44 45 | syl2anb | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
| 47 | 40 42 46 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ ( Clsd ‘ 𝐾 ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
| 48 | 6 38 47 | mpbir2and | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |