This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnheibor . (Contributed by Mario Carneiro, 14-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnheibor.2 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| cnheibor.3 | ⊢ 𝑇 = ( 𝐽 ↾t 𝑋 ) | ||
| cnheibor.4 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) | ||
| cnheibor.5 | ⊢ 𝑌 = ( 𝐹 “ ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) | ||
| Assertion | cnheiborlem | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) → 𝑇 ∈ Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnheibor.2 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | cnheibor.3 | ⊢ 𝑇 = ( 𝐽 ↾t 𝑋 ) | |
| 3 | cnheibor.4 | ⊢ 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + ( i · 𝑦 ) ) ) | |
| 4 | cnheibor.5 | ⊢ 𝑌 = ( 𝐹 “ ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) | |
| 5 | 1 | cnfldtop | ⊢ 𝐽 ∈ Top |
| 6 | 3 | cnref1o | ⊢ 𝐹 : ( ℝ × ℝ ) –1-1-onto→ ℂ |
| 7 | f1ofn | ⊢ ( 𝐹 : ( ℝ × ℝ ) –1-1-onto→ ℂ → 𝐹 Fn ( ℝ × ℝ ) ) | |
| 8 | elpreima | ⊢ ( 𝐹 Fn ( ℝ × ℝ ) → ( 𝑢 ∈ ( ◡ 𝐹 “ 𝑋 ) ↔ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) ) | |
| 9 | 6 7 8 | mp2b | ⊢ ( 𝑢 ∈ ( ◡ 𝐹 “ 𝑋 ) ↔ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) |
| 10 | 1st2nd2 | ⊢ ( 𝑢 ∈ ( ℝ × ℝ ) → 𝑢 = 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) | |
| 11 | 10 | ad2antrl | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → 𝑢 = 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) |
| 12 | xp1st | ⊢ ( 𝑢 ∈ ( ℝ × ℝ ) → ( 1st ‘ 𝑢 ) ∈ ℝ ) | |
| 13 | 12 | ad2antrl | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( 1st ‘ 𝑢 ) ∈ ℝ ) |
| 14 | 13 | recnd | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( 1st ‘ 𝑢 ) ∈ ℂ ) |
| 15 | 14 | abscld | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( abs ‘ ( 1st ‘ 𝑢 ) ) ∈ ℝ ) |
| 16 | 1 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 17 | 16 | toponunii | ⊢ ℂ = ∪ 𝐽 |
| 18 | 17 | cldss | ⊢ ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) → 𝑋 ⊆ ℂ ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) → 𝑋 ⊆ ℂ ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → 𝑋 ⊆ ℂ ) |
| 21 | simprr | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) | |
| 22 | 20 21 | sseldd | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑢 ) ∈ ℂ ) |
| 23 | 22 | abscld | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑢 ) ) ∈ ℝ ) |
| 24 | simplrl | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → 𝑅 ∈ ℝ ) | |
| 25 | simprl | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → 𝑢 ∈ ( ℝ × ℝ ) ) | |
| 26 | f1ocnvfv1 | ⊢ ( ( 𝐹 : ( ℝ × ℝ ) –1-1-onto→ ℂ ∧ 𝑢 ∈ ( ℝ × ℝ ) ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) = 𝑢 ) | |
| 27 | 6 25 26 | sylancr | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) = 𝑢 ) |
| 28 | fveq2 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑢 ) → ( ℜ ‘ 𝑧 ) = ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) ) | |
| 29 | fveq2 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑢 ) → ( ℑ ‘ 𝑧 ) = ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) ) | |
| 30 | 28 29 | opeq12d | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑢 ) → 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 = 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) 〉 ) |
| 31 | 3 | cnrecnv | ⊢ ◡ 𝐹 = ( 𝑧 ∈ ℂ ↦ 〈 ( ℜ ‘ 𝑧 ) , ( ℑ ‘ 𝑧 ) 〉 ) |
| 32 | opex | ⊢ 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) 〉 ∈ V | |
| 33 | 30 31 32 | fvmpt | ⊢ ( ( 𝐹 ‘ 𝑢 ) ∈ ℂ → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) = 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) 〉 ) |
| 34 | 22 33 | syl | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( ◡ 𝐹 ‘ ( 𝐹 ‘ 𝑢 ) ) = 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) 〉 ) |
| 35 | 27 34 | eqtr3d | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → 𝑢 = 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) 〉 ) |
| 36 | 35 | fveq2d | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( 1st ‘ 𝑢 ) = ( 1st ‘ 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) 〉 ) ) |
| 37 | fvex | ⊢ ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) ∈ V | |
| 38 | fvex | ⊢ ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) ∈ V | |
| 39 | 37 38 | op1st | ⊢ ( 1st ‘ 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) 〉 ) = ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) |
| 40 | 36 39 | eqtrdi | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( 1st ‘ 𝑢 ) = ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) ) |
| 41 | 40 | fveq2d | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( abs ‘ ( 1st ‘ 𝑢 ) ) = ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 42 | absrele | ⊢ ( ( 𝐹 ‘ 𝑢 ) ∈ ℂ → ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑢 ) ) ) | |
| 43 | 22 42 | syl | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( abs ‘ ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑢 ) ) ) |
| 44 | 41 43 | eqbrtrd | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( abs ‘ ( 1st ‘ 𝑢 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑢 ) ) ) |
| 45 | fveq2 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑢 ) → ( abs ‘ 𝑧 ) = ( abs ‘ ( 𝐹 ‘ 𝑢 ) ) ) | |
| 46 | 45 | breq1d | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑢 ) → ( ( abs ‘ 𝑧 ) ≤ 𝑅 ↔ ( abs ‘ ( 𝐹 ‘ 𝑢 ) ) ≤ 𝑅 ) ) |
| 47 | simplrr | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) | |
| 48 | 46 47 21 | rspcdva | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑢 ) ) ≤ 𝑅 ) |
| 49 | 15 23 24 44 48 | letrd | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( abs ‘ ( 1st ‘ 𝑢 ) ) ≤ 𝑅 ) |
| 50 | 13 24 | absled | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( ( abs ‘ ( 1st ‘ 𝑢 ) ) ≤ 𝑅 ↔ ( - 𝑅 ≤ ( 1st ‘ 𝑢 ) ∧ ( 1st ‘ 𝑢 ) ≤ 𝑅 ) ) ) |
| 51 | 49 50 | mpbid | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( - 𝑅 ≤ ( 1st ‘ 𝑢 ) ∧ ( 1st ‘ 𝑢 ) ≤ 𝑅 ) ) |
| 52 | 51 | simpld | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → - 𝑅 ≤ ( 1st ‘ 𝑢 ) ) |
| 53 | 51 | simprd | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( 1st ‘ 𝑢 ) ≤ 𝑅 ) |
| 54 | renegcl | ⊢ ( 𝑅 ∈ ℝ → - 𝑅 ∈ ℝ ) | |
| 55 | 24 54 | syl | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → - 𝑅 ∈ ℝ ) |
| 56 | elicc2 | ⊢ ( ( - 𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( 1st ‘ 𝑢 ) ∈ ( - 𝑅 [,] 𝑅 ) ↔ ( ( 1st ‘ 𝑢 ) ∈ ℝ ∧ - 𝑅 ≤ ( 1st ‘ 𝑢 ) ∧ ( 1st ‘ 𝑢 ) ≤ 𝑅 ) ) ) | |
| 57 | 55 24 56 | syl2anc | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( ( 1st ‘ 𝑢 ) ∈ ( - 𝑅 [,] 𝑅 ) ↔ ( ( 1st ‘ 𝑢 ) ∈ ℝ ∧ - 𝑅 ≤ ( 1st ‘ 𝑢 ) ∧ ( 1st ‘ 𝑢 ) ≤ 𝑅 ) ) ) |
| 58 | 13 52 53 57 | mpbir3and | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( 1st ‘ 𝑢 ) ∈ ( - 𝑅 [,] 𝑅 ) ) |
| 59 | xp2nd | ⊢ ( 𝑢 ∈ ( ℝ × ℝ ) → ( 2nd ‘ 𝑢 ) ∈ ℝ ) | |
| 60 | 59 | ad2antrl | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( 2nd ‘ 𝑢 ) ∈ ℝ ) |
| 61 | 60 | recnd | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( 2nd ‘ 𝑢 ) ∈ ℂ ) |
| 62 | 61 | abscld | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( abs ‘ ( 2nd ‘ 𝑢 ) ) ∈ ℝ ) |
| 63 | 35 | fveq2d | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( 2nd ‘ 𝑢 ) = ( 2nd ‘ 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) 〉 ) ) |
| 64 | 37 38 | op2nd | ⊢ ( 2nd ‘ 〈 ( ℜ ‘ ( 𝐹 ‘ 𝑢 ) ) , ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) 〉 ) = ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) |
| 65 | 63 64 | eqtrdi | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( 2nd ‘ 𝑢 ) = ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) ) |
| 66 | 65 | fveq2d | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( abs ‘ ( 2nd ‘ 𝑢 ) ) = ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 67 | absimle | ⊢ ( ( 𝐹 ‘ 𝑢 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑢 ) ) ) | |
| 68 | 22 67 | syl | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( abs ‘ ( ℑ ‘ ( 𝐹 ‘ 𝑢 ) ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑢 ) ) ) |
| 69 | 66 68 | eqbrtrd | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( abs ‘ ( 2nd ‘ 𝑢 ) ) ≤ ( abs ‘ ( 𝐹 ‘ 𝑢 ) ) ) |
| 70 | 62 23 24 69 48 | letrd | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( abs ‘ ( 2nd ‘ 𝑢 ) ) ≤ 𝑅 ) |
| 71 | 60 24 | absled | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( ( abs ‘ ( 2nd ‘ 𝑢 ) ) ≤ 𝑅 ↔ ( - 𝑅 ≤ ( 2nd ‘ 𝑢 ) ∧ ( 2nd ‘ 𝑢 ) ≤ 𝑅 ) ) ) |
| 72 | 70 71 | mpbid | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( - 𝑅 ≤ ( 2nd ‘ 𝑢 ) ∧ ( 2nd ‘ 𝑢 ) ≤ 𝑅 ) ) |
| 73 | 72 | simpld | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → - 𝑅 ≤ ( 2nd ‘ 𝑢 ) ) |
| 74 | 72 | simprd | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( 2nd ‘ 𝑢 ) ≤ 𝑅 ) |
| 75 | elicc2 | ⊢ ( ( - 𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( 2nd ‘ 𝑢 ) ∈ ( - 𝑅 [,] 𝑅 ) ↔ ( ( 2nd ‘ 𝑢 ) ∈ ℝ ∧ - 𝑅 ≤ ( 2nd ‘ 𝑢 ) ∧ ( 2nd ‘ 𝑢 ) ≤ 𝑅 ) ) ) | |
| 76 | 55 24 75 | syl2anc | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( ( 2nd ‘ 𝑢 ) ∈ ( - 𝑅 [,] 𝑅 ) ↔ ( ( 2nd ‘ 𝑢 ) ∈ ℝ ∧ - 𝑅 ≤ ( 2nd ‘ 𝑢 ) ∧ ( 2nd ‘ 𝑢 ) ≤ 𝑅 ) ) ) |
| 77 | 60 73 74 76 | mpbir3and | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → ( 2nd ‘ 𝑢 ) ∈ ( - 𝑅 [,] 𝑅 ) ) |
| 78 | 58 77 | opelxpd | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ∈ ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) |
| 79 | 11 78 | eqeltrd | ⊢ ( ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) ∧ ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) ) → 𝑢 ∈ ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) |
| 80 | 79 | ex | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) → ( ( 𝑢 ∈ ( ℝ × ℝ ) ∧ ( 𝐹 ‘ 𝑢 ) ∈ 𝑋 ) → 𝑢 ∈ ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) ) |
| 81 | 9 80 | biimtrid | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) → ( 𝑢 ∈ ( ◡ 𝐹 “ 𝑋 ) → 𝑢 ∈ ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) ) |
| 82 | 81 | ssrdv | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) → ( ◡ 𝐹 “ 𝑋 ) ⊆ ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) |
| 83 | f1ofun | ⊢ ( 𝐹 : ( ℝ × ℝ ) –1-1-onto→ ℂ → Fun 𝐹 ) | |
| 84 | 6 83 | ax-mp | ⊢ Fun 𝐹 |
| 85 | f1ofo | ⊢ ( 𝐹 : ( ℝ × ℝ ) –1-1-onto→ ℂ → 𝐹 : ( ℝ × ℝ ) –onto→ ℂ ) | |
| 86 | forn | ⊢ ( 𝐹 : ( ℝ × ℝ ) –onto→ ℂ → ran 𝐹 = ℂ ) | |
| 87 | 6 85 86 | mp2b | ⊢ ran 𝐹 = ℂ |
| 88 | 19 87 | sseqtrrdi | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) → 𝑋 ⊆ ran 𝐹 ) |
| 89 | funimass1 | ⊢ ( ( Fun 𝐹 ∧ 𝑋 ⊆ ran 𝐹 ) → ( ( ◡ 𝐹 “ 𝑋 ) ⊆ ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) → 𝑋 ⊆ ( 𝐹 “ ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) ) ) | |
| 90 | 84 88 89 | sylancr | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) → ( ( ◡ 𝐹 “ 𝑋 ) ⊆ ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) → 𝑋 ⊆ ( 𝐹 “ ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) ) ) |
| 91 | 82 90 | mpd | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) → 𝑋 ⊆ ( 𝐹 “ ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) ) |
| 92 | 91 4 | sseqtrrdi | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) → 𝑋 ⊆ 𝑌 ) |
| 93 | eqid | ⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) | |
| 94 | 3 93 1 | cnrehmeo | ⊢ 𝐹 ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Homeo 𝐽 ) |
| 95 | imaexg | ⊢ ( 𝐹 ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Homeo 𝐽 ) → ( 𝐹 “ ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) ∈ V ) | |
| 96 | 94 95 | ax-mp | ⊢ ( 𝐹 “ ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) ∈ V |
| 97 | 4 96 | eqeltri | ⊢ 𝑌 ∈ V |
| 98 | 97 | a1i | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) → 𝑌 ∈ V ) |
| 99 | restabs | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ V ) → ( ( 𝐽 ↾t 𝑌 ) ↾t 𝑋 ) = ( 𝐽 ↾t 𝑋 ) ) | |
| 100 | 5 92 98 99 | mp3an2i | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) → ( ( 𝐽 ↾t 𝑌 ) ↾t 𝑋 ) = ( 𝐽 ↾t 𝑋 ) ) |
| 101 | 100 2 | eqtr4di | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) → ( ( 𝐽 ↾t 𝑌 ) ↾t 𝑋 ) = 𝑇 ) |
| 102 | 4 | oveq2i | ⊢ ( 𝐽 ↾t 𝑌 ) = ( 𝐽 ↾t ( 𝐹 “ ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) ) |
| 103 | ishmeo | ⊢ ( 𝐹 ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Homeo 𝐽 ) ↔ ( 𝐹 ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Cn 𝐽 ) ∧ ◡ 𝐹 ∈ ( 𝐽 Cn ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) ) ) ) | |
| 104 | 94 103 | mpbi | ⊢ ( 𝐹 ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Cn 𝐽 ) ∧ ◡ 𝐹 ∈ ( 𝐽 Cn ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) ) ) |
| 105 | 104 | simpli | ⊢ 𝐹 ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Cn 𝐽 ) |
| 106 | iccssre | ⊢ ( ( - 𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( - 𝑅 [,] 𝑅 ) ⊆ ℝ ) | |
| 107 | 54 106 | mpancom | ⊢ ( 𝑅 ∈ ℝ → ( - 𝑅 [,] 𝑅 ) ⊆ ℝ ) |
| 108 | 1 93 | rerest | ⊢ ( ( - 𝑅 [,] 𝑅 ) ⊆ ℝ → ( 𝐽 ↾t ( - 𝑅 [,] 𝑅 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( - 𝑅 [,] 𝑅 ) ) ) |
| 109 | 107 108 | syl | ⊢ ( 𝑅 ∈ ℝ → ( 𝐽 ↾t ( - 𝑅 [,] 𝑅 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( - 𝑅 [,] 𝑅 ) ) ) |
| 110 | 109 109 | oveq12d | ⊢ ( 𝑅 ∈ ℝ → ( ( 𝐽 ↾t ( - 𝑅 [,] 𝑅 ) ) ×t ( 𝐽 ↾t ( - 𝑅 [,] 𝑅 ) ) ) = ( ( ( topGen ‘ ran (,) ) ↾t ( - 𝑅 [,] 𝑅 ) ) ×t ( ( topGen ‘ ran (,) ) ↾t ( - 𝑅 [,] 𝑅 ) ) ) ) |
| 111 | retop | ⊢ ( topGen ‘ ran (,) ) ∈ Top | |
| 112 | ovex | ⊢ ( - 𝑅 [,] 𝑅 ) ∈ V | |
| 113 | txrest | ⊢ ( ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( topGen ‘ ran (,) ) ∈ Top ) ∧ ( ( - 𝑅 [,] 𝑅 ) ∈ V ∧ ( - 𝑅 [,] 𝑅 ) ∈ V ) ) → ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) ↾t ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) = ( ( ( topGen ‘ ran (,) ) ↾t ( - 𝑅 [,] 𝑅 ) ) ×t ( ( topGen ‘ ran (,) ) ↾t ( - 𝑅 [,] 𝑅 ) ) ) ) | |
| 114 | 111 111 112 112 113 | mp4an | ⊢ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) ↾t ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) = ( ( ( topGen ‘ ran (,) ) ↾t ( - 𝑅 [,] 𝑅 ) ) ×t ( ( topGen ‘ ran (,) ) ↾t ( - 𝑅 [,] 𝑅 ) ) ) |
| 115 | 110 114 | eqtr4di | ⊢ ( 𝑅 ∈ ℝ → ( ( 𝐽 ↾t ( - 𝑅 [,] 𝑅 ) ) ×t ( 𝐽 ↾t ( - 𝑅 [,] 𝑅 ) ) ) = ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) ↾t ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) ) |
| 116 | eqid | ⊢ ( ( topGen ‘ ran (,) ) ↾t ( - 𝑅 [,] 𝑅 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( - 𝑅 [,] 𝑅 ) ) | |
| 117 | 93 116 | icccmp | ⊢ ( ( - 𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( - 𝑅 [,] 𝑅 ) ) ∈ Comp ) |
| 118 | 54 117 | mpancom | ⊢ ( 𝑅 ∈ ℝ → ( ( topGen ‘ ran (,) ) ↾t ( - 𝑅 [,] 𝑅 ) ) ∈ Comp ) |
| 119 | 109 118 | eqeltrd | ⊢ ( 𝑅 ∈ ℝ → ( 𝐽 ↾t ( - 𝑅 [,] 𝑅 ) ) ∈ Comp ) |
| 120 | txcmp | ⊢ ( ( ( 𝐽 ↾t ( - 𝑅 [,] 𝑅 ) ) ∈ Comp ∧ ( 𝐽 ↾t ( - 𝑅 [,] 𝑅 ) ) ∈ Comp ) → ( ( 𝐽 ↾t ( - 𝑅 [,] 𝑅 ) ) ×t ( 𝐽 ↾t ( - 𝑅 [,] 𝑅 ) ) ) ∈ Comp ) | |
| 121 | 119 119 120 | syl2anc | ⊢ ( 𝑅 ∈ ℝ → ( ( 𝐽 ↾t ( - 𝑅 [,] 𝑅 ) ) ×t ( 𝐽 ↾t ( - 𝑅 [,] 𝑅 ) ) ) ∈ Comp ) |
| 122 | 115 121 | eqeltrrd | ⊢ ( 𝑅 ∈ ℝ → ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) ↾t ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) ∈ Comp ) |
| 123 | imacmp | ⊢ ( ( 𝐹 ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Cn 𝐽 ) ∧ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) ↾t ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) ∈ Comp ) → ( 𝐽 ↾t ( 𝐹 “ ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) ) ∈ Comp ) | |
| 124 | 105 122 123 | sylancr | ⊢ ( 𝑅 ∈ ℝ → ( 𝐽 ↾t ( 𝐹 “ ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) ) ∈ Comp ) |
| 125 | 102 124 | eqeltrid | ⊢ ( 𝑅 ∈ ℝ → ( 𝐽 ↾t 𝑌 ) ∈ Comp ) |
| 126 | 125 | ad2antrl | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) → ( 𝐽 ↾t 𝑌 ) ∈ Comp ) |
| 127 | imassrn | ⊢ ( 𝐹 “ ( ( - 𝑅 [,] 𝑅 ) × ( - 𝑅 [,] 𝑅 ) ) ) ⊆ ran 𝐹 | |
| 128 | 4 127 | eqsstri | ⊢ 𝑌 ⊆ ran 𝐹 |
| 129 | f1of | ⊢ ( 𝐹 : ( ℝ × ℝ ) –1-1-onto→ ℂ → 𝐹 : ( ℝ × ℝ ) ⟶ ℂ ) | |
| 130 | frn | ⊢ ( 𝐹 : ( ℝ × ℝ ) ⟶ ℂ → ran 𝐹 ⊆ ℂ ) | |
| 131 | 6 129 130 | mp2b | ⊢ ran 𝐹 ⊆ ℂ |
| 132 | 128 131 | sstri | ⊢ 𝑌 ⊆ ℂ |
| 133 | simpl | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 134 | 17 | restcldi | ⊢ ( ( 𝑌 ⊆ ℂ ∧ 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑋 ⊆ 𝑌 ) → 𝑋 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑌 ) ) ) |
| 135 | 132 133 92 134 | mp3an2i | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) → 𝑋 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑌 ) ) ) |
| 136 | cmpcld | ⊢ ( ( ( 𝐽 ↾t 𝑌 ) ∈ Comp ∧ 𝑋 ∈ ( Clsd ‘ ( 𝐽 ↾t 𝑌 ) ) ) → ( ( 𝐽 ↾t 𝑌 ) ↾t 𝑋 ) ∈ Comp ) | |
| 137 | 126 135 136 | syl2anc | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) → ( ( 𝐽 ↾t 𝑌 ) ↾t 𝑋 ) ∈ Comp ) |
| 138 | 101 137 | eqeltrrd | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑅 ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ 𝑧 ) ≤ 𝑅 ) ) → 𝑇 ∈ Comp ) |