This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnheibor . (Contributed by Mario Carneiro, 14-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnheibor.2 | |- J = ( TopOpen ` CCfld ) |
|
| cnheibor.3 | |- T = ( J |`t X ) |
||
| cnheibor.4 | |- F = ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) |
||
| cnheibor.5 | |- Y = ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) |
||
| Assertion | cnheiborlem | |- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> T e. Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnheibor.2 | |- J = ( TopOpen ` CCfld ) |
|
| 2 | cnheibor.3 | |- T = ( J |`t X ) |
|
| 3 | cnheibor.4 | |- F = ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) |
|
| 4 | cnheibor.5 | |- Y = ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) |
|
| 5 | 1 | cnfldtop | |- J e. Top |
| 6 | 3 | cnref1o | |- F : ( RR X. RR ) -1-1-onto-> CC |
| 7 | f1ofn | |- ( F : ( RR X. RR ) -1-1-onto-> CC -> F Fn ( RR X. RR ) ) |
|
| 8 | elpreima | |- ( F Fn ( RR X. RR ) -> ( u e. ( `' F " X ) <-> ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) ) |
|
| 9 | 6 7 8 | mp2b | |- ( u e. ( `' F " X ) <-> ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) |
| 10 | 1st2nd2 | |- ( u e. ( RR X. RR ) -> u = <. ( 1st ` u ) , ( 2nd ` u ) >. ) |
|
| 11 | 10 | ad2antrl | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> u = <. ( 1st ` u ) , ( 2nd ` u ) >. ) |
| 12 | xp1st | |- ( u e. ( RR X. RR ) -> ( 1st ` u ) e. RR ) |
|
| 13 | 12 | ad2antrl | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 1st ` u ) e. RR ) |
| 14 | 13 | recnd | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 1st ` u ) e. CC ) |
| 15 | 14 | abscld | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( 1st ` u ) ) e. RR ) |
| 16 | 1 | cnfldtopon | |- J e. ( TopOn ` CC ) |
| 17 | 16 | toponunii | |- CC = U. J |
| 18 | 17 | cldss | |- ( X e. ( Clsd ` J ) -> X C_ CC ) |
| 19 | 18 | adantr | |- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> X C_ CC ) |
| 20 | 19 | adantr | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> X C_ CC ) |
| 21 | simprr | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( F ` u ) e. X ) |
|
| 22 | 20 21 | sseldd | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( F ` u ) e. CC ) |
| 23 | 22 | abscld | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( F ` u ) ) e. RR ) |
| 24 | simplrl | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> R e. RR ) |
|
| 25 | simprl | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> u e. ( RR X. RR ) ) |
|
| 26 | f1ocnvfv1 | |- ( ( F : ( RR X. RR ) -1-1-onto-> CC /\ u e. ( RR X. RR ) ) -> ( `' F ` ( F ` u ) ) = u ) |
|
| 27 | 6 25 26 | sylancr | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( `' F ` ( F ` u ) ) = u ) |
| 28 | fveq2 | |- ( z = ( F ` u ) -> ( Re ` z ) = ( Re ` ( F ` u ) ) ) |
|
| 29 | fveq2 | |- ( z = ( F ` u ) -> ( Im ` z ) = ( Im ` ( F ` u ) ) ) |
|
| 30 | 28 29 | opeq12d | |- ( z = ( F ` u ) -> <. ( Re ` z ) , ( Im ` z ) >. = <. ( Re ` ( F ` u ) ) , ( Im ` ( F ` u ) ) >. ) |
| 31 | 3 | cnrecnv | |- `' F = ( z e. CC |-> <. ( Re ` z ) , ( Im ` z ) >. ) |
| 32 | opex | |- <. ( Re ` ( F ` u ) ) , ( Im ` ( F ` u ) ) >. e. _V |
|
| 33 | 30 31 32 | fvmpt | |- ( ( F ` u ) e. CC -> ( `' F ` ( F ` u ) ) = <. ( Re ` ( F ` u ) ) , ( Im ` ( F ` u ) ) >. ) |
| 34 | 22 33 | syl | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( `' F ` ( F ` u ) ) = <. ( Re ` ( F ` u ) ) , ( Im ` ( F ` u ) ) >. ) |
| 35 | 27 34 | eqtr3d | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> u = <. ( Re ` ( F ` u ) ) , ( Im ` ( F ` u ) ) >. ) |
| 36 | 35 | fveq2d | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 1st ` u ) = ( 1st ` <. ( Re ` ( F ` u ) ) , ( Im ` ( F ` u ) ) >. ) ) |
| 37 | fvex | |- ( Re ` ( F ` u ) ) e. _V |
|
| 38 | fvex | |- ( Im ` ( F ` u ) ) e. _V |
|
| 39 | 37 38 | op1st | |- ( 1st ` <. ( Re ` ( F ` u ) ) , ( Im ` ( F ` u ) ) >. ) = ( Re ` ( F ` u ) ) |
| 40 | 36 39 | eqtrdi | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 1st ` u ) = ( Re ` ( F ` u ) ) ) |
| 41 | 40 | fveq2d | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( 1st ` u ) ) = ( abs ` ( Re ` ( F ` u ) ) ) ) |
| 42 | absrele | |- ( ( F ` u ) e. CC -> ( abs ` ( Re ` ( F ` u ) ) ) <_ ( abs ` ( F ` u ) ) ) |
|
| 43 | 22 42 | syl | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( Re ` ( F ` u ) ) ) <_ ( abs ` ( F ` u ) ) ) |
| 44 | 41 43 | eqbrtrd | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( 1st ` u ) ) <_ ( abs ` ( F ` u ) ) ) |
| 45 | fveq2 | |- ( z = ( F ` u ) -> ( abs ` z ) = ( abs ` ( F ` u ) ) ) |
|
| 46 | 45 | breq1d | |- ( z = ( F ` u ) -> ( ( abs ` z ) <_ R <-> ( abs ` ( F ` u ) ) <_ R ) ) |
| 47 | simplrr | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> A. z e. X ( abs ` z ) <_ R ) |
|
| 48 | 46 47 21 | rspcdva | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( F ` u ) ) <_ R ) |
| 49 | 15 23 24 44 48 | letrd | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( 1st ` u ) ) <_ R ) |
| 50 | 13 24 | absled | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( ( abs ` ( 1st ` u ) ) <_ R <-> ( -u R <_ ( 1st ` u ) /\ ( 1st ` u ) <_ R ) ) ) |
| 51 | 49 50 | mpbid | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( -u R <_ ( 1st ` u ) /\ ( 1st ` u ) <_ R ) ) |
| 52 | 51 | simpld | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> -u R <_ ( 1st ` u ) ) |
| 53 | 51 | simprd | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 1st ` u ) <_ R ) |
| 54 | renegcl | |- ( R e. RR -> -u R e. RR ) |
|
| 55 | 24 54 | syl | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> -u R e. RR ) |
| 56 | elicc2 | |- ( ( -u R e. RR /\ R e. RR ) -> ( ( 1st ` u ) e. ( -u R [,] R ) <-> ( ( 1st ` u ) e. RR /\ -u R <_ ( 1st ` u ) /\ ( 1st ` u ) <_ R ) ) ) |
|
| 57 | 55 24 56 | syl2anc | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( ( 1st ` u ) e. ( -u R [,] R ) <-> ( ( 1st ` u ) e. RR /\ -u R <_ ( 1st ` u ) /\ ( 1st ` u ) <_ R ) ) ) |
| 58 | 13 52 53 57 | mpbir3and | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 1st ` u ) e. ( -u R [,] R ) ) |
| 59 | xp2nd | |- ( u e. ( RR X. RR ) -> ( 2nd ` u ) e. RR ) |
|
| 60 | 59 | ad2antrl | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 2nd ` u ) e. RR ) |
| 61 | 60 | recnd | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 2nd ` u ) e. CC ) |
| 62 | 61 | abscld | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( 2nd ` u ) ) e. RR ) |
| 63 | 35 | fveq2d | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 2nd ` u ) = ( 2nd ` <. ( Re ` ( F ` u ) ) , ( Im ` ( F ` u ) ) >. ) ) |
| 64 | 37 38 | op2nd | |- ( 2nd ` <. ( Re ` ( F ` u ) ) , ( Im ` ( F ` u ) ) >. ) = ( Im ` ( F ` u ) ) |
| 65 | 63 64 | eqtrdi | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 2nd ` u ) = ( Im ` ( F ` u ) ) ) |
| 66 | 65 | fveq2d | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( 2nd ` u ) ) = ( abs ` ( Im ` ( F ` u ) ) ) ) |
| 67 | absimle | |- ( ( F ` u ) e. CC -> ( abs ` ( Im ` ( F ` u ) ) ) <_ ( abs ` ( F ` u ) ) ) |
|
| 68 | 22 67 | syl | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( Im ` ( F ` u ) ) ) <_ ( abs ` ( F ` u ) ) ) |
| 69 | 66 68 | eqbrtrd | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( 2nd ` u ) ) <_ ( abs ` ( F ` u ) ) ) |
| 70 | 62 23 24 69 48 | letrd | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( abs ` ( 2nd ` u ) ) <_ R ) |
| 71 | 60 24 | absled | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( ( abs ` ( 2nd ` u ) ) <_ R <-> ( -u R <_ ( 2nd ` u ) /\ ( 2nd ` u ) <_ R ) ) ) |
| 72 | 70 71 | mpbid | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( -u R <_ ( 2nd ` u ) /\ ( 2nd ` u ) <_ R ) ) |
| 73 | 72 | simpld | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> -u R <_ ( 2nd ` u ) ) |
| 74 | 72 | simprd | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 2nd ` u ) <_ R ) |
| 75 | elicc2 | |- ( ( -u R e. RR /\ R e. RR ) -> ( ( 2nd ` u ) e. ( -u R [,] R ) <-> ( ( 2nd ` u ) e. RR /\ -u R <_ ( 2nd ` u ) /\ ( 2nd ` u ) <_ R ) ) ) |
|
| 76 | 55 24 75 | syl2anc | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( ( 2nd ` u ) e. ( -u R [,] R ) <-> ( ( 2nd ` u ) e. RR /\ -u R <_ ( 2nd ` u ) /\ ( 2nd ` u ) <_ R ) ) ) |
| 77 | 60 73 74 76 | mpbir3and | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> ( 2nd ` u ) e. ( -u R [,] R ) ) |
| 78 | 58 77 | opelxpd | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> <. ( 1st ` u ) , ( 2nd ` u ) >. e. ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) |
| 79 | 11 78 | eqeltrd | |- ( ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) /\ ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) ) -> u e. ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) |
| 80 | 79 | ex | |- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> ( ( u e. ( RR X. RR ) /\ ( F ` u ) e. X ) -> u e. ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) ) |
| 81 | 9 80 | biimtrid | |- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> ( u e. ( `' F " X ) -> u e. ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) ) |
| 82 | 81 | ssrdv | |- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> ( `' F " X ) C_ ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) |
| 83 | f1ofun | |- ( F : ( RR X. RR ) -1-1-onto-> CC -> Fun F ) |
|
| 84 | 6 83 | ax-mp | |- Fun F |
| 85 | f1ofo | |- ( F : ( RR X. RR ) -1-1-onto-> CC -> F : ( RR X. RR ) -onto-> CC ) |
|
| 86 | forn | |- ( F : ( RR X. RR ) -onto-> CC -> ran F = CC ) |
|
| 87 | 6 85 86 | mp2b | |- ran F = CC |
| 88 | 19 87 | sseqtrrdi | |- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> X C_ ran F ) |
| 89 | funimass1 | |- ( ( Fun F /\ X C_ ran F ) -> ( ( `' F " X ) C_ ( ( -u R [,] R ) X. ( -u R [,] R ) ) -> X C_ ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) ) ) |
|
| 90 | 84 88 89 | sylancr | |- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> ( ( `' F " X ) C_ ( ( -u R [,] R ) X. ( -u R [,] R ) ) -> X C_ ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) ) ) |
| 91 | 82 90 | mpd | |- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> X C_ ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) ) |
| 92 | 91 4 | sseqtrrdi | |- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> X C_ Y ) |
| 93 | eqid | |- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
|
| 94 | 3 93 1 | cnrehmeo | |- F e. ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) Homeo J ) |
| 95 | imaexg | |- ( F e. ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) Homeo J ) -> ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) e. _V ) |
|
| 96 | 94 95 | ax-mp | |- ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) e. _V |
| 97 | 4 96 | eqeltri | |- Y e. _V |
| 98 | 97 | a1i | |- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> Y e. _V ) |
| 99 | restabs | |- ( ( J e. Top /\ X C_ Y /\ Y e. _V ) -> ( ( J |`t Y ) |`t X ) = ( J |`t X ) ) |
|
| 100 | 5 92 98 99 | mp3an2i | |- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> ( ( J |`t Y ) |`t X ) = ( J |`t X ) ) |
| 101 | 100 2 | eqtr4di | |- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> ( ( J |`t Y ) |`t X ) = T ) |
| 102 | 4 | oveq2i | |- ( J |`t Y ) = ( J |`t ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) ) |
| 103 | ishmeo | |- ( F e. ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) Homeo J ) <-> ( F e. ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) Cn J ) /\ `' F e. ( J Cn ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) ) ) ) |
|
| 104 | 94 103 | mpbi | |- ( F e. ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) Cn J ) /\ `' F e. ( J Cn ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) ) ) |
| 105 | 104 | simpli | |- F e. ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) Cn J ) |
| 106 | iccssre | |- ( ( -u R e. RR /\ R e. RR ) -> ( -u R [,] R ) C_ RR ) |
|
| 107 | 54 106 | mpancom | |- ( R e. RR -> ( -u R [,] R ) C_ RR ) |
| 108 | 1 93 | rerest | |- ( ( -u R [,] R ) C_ RR -> ( J |`t ( -u R [,] R ) ) = ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) ) |
| 109 | 107 108 | syl | |- ( R e. RR -> ( J |`t ( -u R [,] R ) ) = ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) ) |
| 110 | 109 109 | oveq12d | |- ( R e. RR -> ( ( J |`t ( -u R [,] R ) ) tX ( J |`t ( -u R [,] R ) ) ) = ( ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) tX ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) ) ) |
| 111 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 112 | ovex | |- ( -u R [,] R ) e. _V |
|
| 113 | txrest | |- ( ( ( ( topGen ` ran (,) ) e. Top /\ ( topGen ` ran (,) ) e. Top ) /\ ( ( -u R [,] R ) e. _V /\ ( -u R [,] R ) e. _V ) ) -> ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) |`t ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) = ( ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) tX ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) ) ) |
|
| 114 | 111 111 112 112 113 | mp4an | |- ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) |`t ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) = ( ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) tX ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) ) |
| 115 | 110 114 | eqtr4di | |- ( R e. RR -> ( ( J |`t ( -u R [,] R ) ) tX ( J |`t ( -u R [,] R ) ) ) = ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) |`t ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) ) |
| 116 | eqid | |- ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) = ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) |
|
| 117 | 93 116 | icccmp | |- ( ( -u R e. RR /\ R e. RR ) -> ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) e. Comp ) |
| 118 | 54 117 | mpancom | |- ( R e. RR -> ( ( topGen ` ran (,) ) |`t ( -u R [,] R ) ) e. Comp ) |
| 119 | 109 118 | eqeltrd | |- ( R e. RR -> ( J |`t ( -u R [,] R ) ) e. Comp ) |
| 120 | txcmp | |- ( ( ( J |`t ( -u R [,] R ) ) e. Comp /\ ( J |`t ( -u R [,] R ) ) e. Comp ) -> ( ( J |`t ( -u R [,] R ) ) tX ( J |`t ( -u R [,] R ) ) ) e. Comp ) |
|
| 121 | 119 119 120 | syl2anc | |- ( R e. RR -> ( ( J |`t ( -u R [,] R ) ) tX ( J |`t ( -u R [,] R ) ) ) e. Comp ) |
| 122 | 115 121 | eqeltrrd | |- ( R e. RR -> ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) |`t ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) e. Comp ) |
| 123 | imacmp | |- ( ( F e. ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) Cn J ) /\ ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) |`t ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) e. Comp ) -> ( J |`t ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) ) e. Comp ) |
|
| 124 | 105 122 123 | sylancr | |- ( R e. RR -> ( J |`t ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) ) e. Comp ) |
| 125 | 102 124 | eqeltrid | |- ( R e. RR -> ( J |`t Y ) e. Comp ) |
| 126 | 125 | ad2antrl | |- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> ( J |`t Y ) e. Comp ) |
| 127 | imassrn | |- ( F " ( ( -u R [,] R ) X. ( -u R [,] R ) ) ) C_ ran F |
|
| 128 | 4 127 | eqsstri | |- Y C_ ran F |
| 129 | f1of | |- ( F : ( RR X. RR ) -1-1-onto-> CC -> F : ( RR X. RR ) --> CC ) |
|
| 130 | frn | |- ( F : ( RR X. RR ) --> CC -> ran F C_ CC ) |
|
| 131 | 6 129 130 | mp2b | |- ran F C_ CC |
| 132 | 128 131 | sstri | |- Y C_ CC |
| 133 | simpl | |- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> X e. ( Clsd ` J ) ) |
|
| 134 | 17 | restcldi | |- ( ( Y C_ CC /\ X e. ( Clsd ` J ) /\ X C_ Y ) -> X e. ( Clsd ` ( J |`t Y ) ) ) |
| 135 | 132 133 92 134 | mp3an2i | |- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> X e. ( Clsd ` ( J |`t Y ) ) ) |
| 136 | cmpcld | |- ( ( ( J |`t Y ) e. Comp /\ X e. ( Clsd ` ( J |`t Y ) ) ) -> ( ( J |`t Y ) |`t X ) e. Comp ) |
|
| 137 | 126 135 136 | syl2anc | |- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> ( ( J |`t Y ) |`t X ) e. Comp ) |
| 138 | 101 137 | eqeltrrd | |- ( ( X e. ( Clsd ` J ) /\ ( R e. RR /\ A. z e. X ( abs ` z ) <_ R ) ) -> T e. Comp ) |