This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Heine-Borel theorem for complex numbers. A subset of CC is compact iff it is closed and bounded. (Contributed by Mario Carneiro, 14-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnheibor.2 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| cnheibor.3 | ⊢ 𝑇 = ( 𝐽 ↾t 𝑋 ) | ||
| Assertion | cnheibor | ⊢ ( 𝑋 ⊆ ℂ → ( 𝑇 ∈ Comp ↔ ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( abs ‘ 𝑥 ) ≤ 𝑟 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnheibor.2 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | cnheibor.3 | ⊢ 𝑇 = ( 𝐽 ↾t 𝑋 ) | |
| 3 | 1 | cnfldhaus | ⊢ 𝐽 ∈ Haus |
| 4 | simpl | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) → 𝑋 ⊆ ℂ ) | |
| 5 | simpr | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) → 𝑇 ∈ Comp ) | |
| 6 | 2 5 | eqeltrrid | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) → ( 𝐽 ↾t 𝑋 ) ∈ Comp ) |
| 7 | 1 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 8 | 7 | toponunii | ⊢ ℂ = ∪ 𝐽 |
| 9 | 8 | hauscmp | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝑋 ⊆ ℂ ∧ ( 𝐽 ↾t 𝑋 ) ∈ Comp ) → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
| 10 | 3 4 6 9 | mp3an2i | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
| 11 | 1 | cnfldtop | ⊢ 𝐽 ∈ Top |
| 12 | 8 | restuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ ℂ ) → 𝑋 = ∪ ( 𝐽 ↾t 𝑋 ) ) |
| 13 | 11 4 12 | sylancr | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) → 𝑋 = ∪ ( 𝐽 ↾t 𝑋 ) ) |
| 14 | 2 | unieqi | ⊢ ∪ 𝑇 = ∪ ( 𝐽 ↾t 𝑋 ) |
| 15 | 13 14 | eqtr4di | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) → 𝑋 = ∪ 𝑇 ) |
| 16 | 15 | eleq2d | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ∪ 𝑇 ) ) |
| 17 | 16 | biimpar | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ ∪ 𝑇 ) → 𝑥 ∈ 𝑋 ) |
| 18 | cnex | ⊢ ℂ ∈ V | |
| 19 | ssexg | ⊢ ( ( 𝑋 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑋 ∈ V ) | |
| 20 | 4 18 19 | sylancl | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) → 𝑋 ∈ V ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ∈ V ) |
| 22 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 23 | 0cnd | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → 0 ∈ ℂ ) | |
| 24 | 4 | sselda | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ℂ ) |
| 25 | 24 | abscld | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝑥 ) ∈ ℝ ) |
| 26 | peano2re | ⊢ ( ( abs ‘ 𝑥 ) ∈ ℝ → ( ( abs ‘ 𝑥 ) + 1 ) ∈ ℝ ) | |
| 27 | 25 26 | syl | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ 𝑥 ) + 1 ) ∈ ℝ ) |
| 28 | 27 | rexrd | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ 𝑥 ) + 1 ) ∈ ℝ* ) |
| 29 | 1 | cnfldtopn | ⊢ 𝐽 = ( MetOpen ‘ ( abs ∘ − ) ) |
| 30 | 29 | blopn | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) + 1 ) ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∈ 𝐽 ) |
| 31 | 22 23 28 30 | mp3an2i | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∈ 𝐽 ) |
| 32 | elrestr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ∈ V ∧ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∈ 𝐽 ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) ∈ ( 𝐽 ↾t 𝑋 ) ) | |
| 33 | 11 21 31 32 | mp3an2i | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) ∈ ( 𝐽 ↾t 𝑋 ) ) |
| 34 | 33 2 | eleqtrrdi | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) ∈ 𝑇 ) |
| 35 | 0cn | ⊢ 0 ∈ ℂ | |
| 36 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 37 | 36 | cnmetdval | ⊢ ( ( 0 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 0 ( abs ∘ − ) 𝑥 ) = ( abs ‘ ( 0 − 𝑥 ) ) ) |
| 38 | 35 37 | mpan | ⊢ ( 𝑥 ∈ ℂ → ( 0 ( abs ∘ − ) 𝑥 ) = ( abs ‘ ( 0 − 𝑥 ) ) ) |
| 39 | df-neg | ⊢ - 𝑥 = ( 0 − 𝑥 ) | |
| 40 | 39 | fveq2i | ⊢ ( abs ‘ - 𝑥 ) = ( abs ‘ ( 0 − 𝑥 ) ) |
| 41 | absneg | ⊢ ( 𝑥 ∈ ℂ → ( abs ‘ - 𝑥 ) = ( abs ‘ 𝑥 ) ) | |
| 42 | 40 41 | eqtr3id | ⊢ ( 𝑥 ∈ ℂ → ( abs ‘ ( 0 − 𝑥 ) ) = ( abs ‘ 𝑥 ) ) |
| 43 | 38 42 | eqtrd | ⊢ ( 𝑥 ∈ ℂ → ( 0 ( abs ∘ − ) 𝑥 ) = ( abs ‘ 𝑥 ) ) |
| 44 | 24 43 | syl | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → ( 0 ( abs ∘ − ) 𝑥 ) = ( abs ‘ 𝑥 ) ) |
| 45 | 25 | ltp1d | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝑥 ) < ( ( abs ‘ 𝑥 ) + 1 ) ) |
| 46 | 44 45 | eqbrtrd | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → ( 0 ( abs ∘ − ) 𝑥 ) < ( ( abs ‘ 𝑥 ) + 1 ) ) |
| 47 | elbl | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ ( ( abs ‘ 𝑥 ) + 1 ) ∈ ℝ* ) → ( 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 0 ( abs ∘ − ) 𝑥 ) < ( ( abs ‘ 𝑥 ) + 1 ) ) ) ) | |
| 48 | 22 23 28 47 | mp3an2i | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 0 ( abs ∘ − ) 𝑥 ) < ( ( abs ‘ 𝑥 ) + 1 ) ) ) ) |
| 49 | 24 46 48 | mpbir2and | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ) |
| 50 | simpr | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 51 | 49 50 | elind | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) ) |
| 52 | 24 | absge0d | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( abs ‘ 𝑥 ) ) |
| 53 | 25 52 | ge0p1rpd | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ 𝑥 ) + 1 ) ∈ ℝ+ ) |
| 54 | eqid | ⊢ ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) | |
| 55 | oveq2 | ⊢ ( 𝑟 = ( ( abs ‘ 𝑥 ) + 1 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) = ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ) | |
| 56 | 55 | ineq1d | ⊢ ( 𝑟 = ( ( abs ‘ 𝑥 ) + 1 ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ 𝑋 ) = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) ) |
| 57 | 56 | rspceeqv | ⊢ ( ( ( ( abs ‘ 𝑥 ) + 1 ) ∈ ℝ+ ∧ ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) ) → ∃ 𝑟 ∈ ℝ+ ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) = ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ 𝑋 ) ) |
| 58 | 53 54 57 | sylancl | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑟 ∈ ℝ+ ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) = ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ 𝑋 ) ) |
| 59 | eleq2 | ⊢ ( 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) → ( 𝑥 ∈ 𝑢 ↔ 𝑥 ∈ ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) ) ) | |
| 60 | eqeq1 | ⊢ ( 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) → ( 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ 𝑋 ) ↔ ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) = ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ 𝑋 ) ) ) | |
| 61 | 60 | rexbidv | ⊢ ( 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) → ( ∃ 𝑟 ∈ ℝ+ 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ 𝑋 ) ↔ ∃ 𝑟 ∈ ℝ+ ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) = ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ 𝑋 ) ) ) |
| 62 | 59 61 | anbi12d | ⊢ ( 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) → ( ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑟 ∈ ℝ+ 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ 𝑋 ) ) ↔ ( 𝑥 ∈ ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) ∧ ∃ 𝑟 ∈ ℝ+ ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) = ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ 𝑋 ) ) ) ) |
| 63 | 62 | rspcev | ⊢ ( ( ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) ∈ 𝑇 ∧ ( 𝑥 ∈ ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) ∧ ∃ 𝑟 ∈ ℝ+ ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( ( abs ‘ 𝑥 ) + 1 ) ) ∩ 𝑋 ) = ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ 𝑋 ) ) ) → ∃ 𝑢 ∈ 𝑇 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑟 ∈ ℝ+ 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ 𝑋 ) ) ) |
| 64 | 34 51 58 63 | syl12anc | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑢 ∈ 𝑇 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑟 ∈ ℝ+ 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ 𝑋 ) ) ) |
| 65 | 17 64 | syldan | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑥 ∈ ∪ 𝑇 ) → ∃ 𝑢 ∈ 𝑇 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑟 ∈ ℝ+ 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ 𝑋 ) ) ) |
| 66 | 65 | ralrimiva | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) → ∀ 𝑥 ∈ ∪ 𝑇 ∃ 𝑢 ∈ 𝑇 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑟 ∈ ℝ+ 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ 𝑋 ) ) ) |
| 67 | eqid | ⊢ ∪ 𝑇 = ∪ 𝑇 | |
| 68 | oveq2 | ⊢ ( 𝑟 = ( 𝑓 ‘ 𝑢 ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) = ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ) | |
| 69 | 68 | ineq1d | ⊢ ( 𝑟 = ( 𝑓 ‘ 𝑢 ) → ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ 𝑋 ) = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) |
| 70 | 69 | eqeq2d | ⊢ ( 𝑟 = ( 𝑓 ‘ 𝑢 ) → ( 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ 𝑋 ) ↔ 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) |
| 71 | 67 70 | cmpcovf | ⊢ ( ( 𝑇 ∈ Comp ∧ ∀ 𝑥 ∈ ∪ 𝑇 ∃ 𝑢 ∈ 𝑇 ( 𝑥 ∈ 𝑢 ∧ ∃ 𝑟 ∈ ℝ+ 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ 𝑋 ) ) ) → ∃ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ( ∪ 𝑇 = ∪ 𝑠 ∧ ∃ 𝑓 ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ) |
| 72 | 5 66 71 | syl2anc | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) → ∃ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ( ∪ 𝑇 = ∪ 𝑠 ∧ ∃ 𝑓 ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ) |
| 73 | 15 | ad4antr | ⊢ ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) → 𝑋 = ∪ 𝑇 ) |
| 74 | simpllr | ⊢ ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) → ∪ 𝑇 = ∪ 𝑠 ) | |
| 75 | 73 74 | eqtrd | ⊢ ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) → 𝑋 = ∪ 𝑠 ) |
| 76 | 75 | eleq2d | ⊢ ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ∪ 𝑠 ) ) |
| 77 | eluni2 | ⊢ ( 𝑥 ∈ ∪ 𝑠 ↔ ∃ 𝑧 ∈ 𝑠 𝑥 ∈ 𝑧 ) | |
| 78 | 76 77 | bitrdi | ⊢ ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) → ( 𝑥 ∈ 𝑋 ↔ ∃ 𝑧 ∈ 𝑠 𝑥 ∈ 𝑧 ) ) |
| 79 | elssuni | ⊢ ( 𝑧 ∈ 𝑠 → 𝑧 ⊆ ∪ 𝑠 ) | |
| 80 | 79 | ad2antrl | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑧 ⊆ ∪ 𝑠 ) |
| 81 | 75 | adantr | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑋 = ∪ 𝑠 ) |
| 82 | 80 81 | sseqtrrd | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑧 ⊆ 𝑋 ) |
| 83 | simp-6l | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑋 ⊆ ℂ ) | |
| 84 | 82 83 | sstrd | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑧 ⊆ ℂ ) |
| 85 | simprr | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑥 ∈ 𝑧 ) | |
| 86 | 84 85 | sseldd | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑥 ∈ ℂ ) |
| 87 | 86 | abscld | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → ( abs ‘ 𝑥 ) ∈ ℝ ) |
| 88 | simplrl | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑟 ∈ ℝ ) | |
| 89 | simprl | ⊢ ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) → 𝑓 : 𝑠 ⟶ ℝ+ ) | |
| 90 | 89 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑓 : 𝑠 ⟶ ℝ+ ) |
| 91 | simprl | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑧 ∈ 𝑠 ) | |
| 92 | 90 91 | ffvelcdmd | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → ( 𝑓 ‘ 𝑧 ) ∈ ℝ+ ) |
| 93 | 92 | rpred | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → ( 𝑓 ‘ 𝑧 ) ∈ ℝ ) |
| 94 | 86 43 | syl | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → ( 0 ( abs ∘ − ) 𝑥 ) = ( abs ‘ 𝑥 ) ) |
| 95 | id | ⊢ ( 𝑢 = 𝑧 → 𝑢 = 𝑧 ) | |
| 96 | fveq2 | ⊢ ( 𝑢 = 𝑧 → ( 𝑓 ‘ 𝑢 ) = ( 𝑓 ‘ 𝑧 ) ) | |
| 97 | 96 | oveq2d | ⊢ ( 𝑢 = 𝑧 → ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑧 ) ) ) |
| 98 | 97 | ineq1d | ⊢ ( 𝑢 = 𝑧 → ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑧 ) ) ∩ 𝑋 ) ) |
| 99 | 95 98 | eqeq12d | ⊢ ( 𝑢 = 𝑧 → ( 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ↔ 𝑧 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑧 ) ) ∩ 𝑋 ) ) ) |
| 100 | simprr | ⊢ ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) → ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) | |
| 101 | 100 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) |
| 102 | 99 101 91 | rspcdva | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑧 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑧 ) ) ∩ 𝑋 ) ) |
| 103 | 85 102 | eleqtrd | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑥 ∈ ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑧 ) ) ∩ 𝑋 ) ) |
| 104 | 103 | elin1d | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑧 ) ) ) |
| 105 | 0cnd | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → 0 ∈ ℂ ) | |
| 106 | 92 | rpxrd | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → ( 𝑓 ‘ 𝑧 ) ∈ ℝ* ) |
| 107 | elbl | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ ( 𝑓 ‘ 𝑧 ) ∈ ℝ* ) → ( 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑧 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 0 ( abs ∘ − ) 𝑥 ) < ( 𝑓 ‘ 𝑧 ) ) ) ) | |
| 108 | 22 105 106 107 | mp3an2i | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → ( 𝑥 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑧 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 0 ( abs ∘ − ) 𝑥 ) < ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 109 | 104 108 | mpbid | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → ( 𝑥 ∈ ℂ ∧ ( 0 ( abs ∘ − ) 𝑥 ) < ( 𝑓 ‘ 𝑧 ) ) ) |
| 110 | 109 | simprd | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → ( 0 ( abs ∘ − ) 𝑥 ) < ( 𝑓 ‘ 𝑧 ) ) |
| 111 | 94 110 | eqbrtrrd | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → ( abs ‘ 𝑥 ) < ( 𝑓 ‘ 𝑧 ) ) |
| 112 | 96 | breq1d | ⊢ ( 𝑢 = 𝑧 → ( ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ↔ ( 𝑓 ‘ 𝑧 ) ≤ 𝑟 ) ) |
| 113 | simplrr | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) | |
| 114 | 112 113 91 | rspcdva | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → ( 𝑓 ‘ 𝑧 ) ≤ 𝑟 ) |
| 115 | 87 93 88 111 114 | ltletrd | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → ( abs ‘ 𝑥 ) < 𝑟 ) |
| 116 | 87 88 115 | ltled | ⊢ ( ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) ∧ ( 𝑧 ∈ 𝑠 ∧ 𝑥 ∈ 𝑧 ) ) → ( abs ‘ 𝑥 ) ≤ 𝑟 ) |
| 117 | 116 | rexlimdvaa | ⊢ ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) → ( ∃ 𝑧 ∈ 𝑠 𝑥 ∈ 𝑧 → ( abs ‘ 𝑥 ) ≤ 𝑟 ) ) |
| 118 | 78 117 | sylbid | ⊢ ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) → ( 𝑥 ∈ 𝑋 → ( abs ‘ 𝑥 ) ≤ 𝑟 ) ) |
| 119 | 118 | ralrimiv | ⊢ ( ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) ) → ∀ 𝑥 ∈ 𝑋 ( abs ‘ 𝑥 ) ≤ 𝑟 ) |
| 120 | simpllr | ⊢ ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) → 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) | |
| 121 | 120 | elin2d | ⊢ ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) → 𝑠 ∈ Fin ) |
| 122 | ffvelcdm | ⊢ ( ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ 𝑢 ∈ 𝑠 ) → ( 𝑓 ‘ 𝑢 ) ∈ ℝ+ ) | |
| 123 | 122 | rpred | ⊢ ( ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ 𝑢 ∈ 𝑠 ) → ( 𝑓 ‘ 𝑢 ) ∈ ℝ ) |
| 124 | 123 | ralrimiva | ⊢ ( 𝑓 : 𝑠 ⟶ ℝ+ → ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ∈ ℝ ) |
| 125 | 124 | ad2antrl | ⊢ ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) → ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ∈ ℝ ) |
| 126 | fimaxre3 | ⊢ ( ( 𝑠 ∈ Fin ∧ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ∈ ℝ ) → ∃ 𝑟 ∈ ℝ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) | |
| 127 | 121 125 126 | syl2anc | ⊢ ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑢 ∈ 𝑠 ( 𝑓 ‘ 𝑢 ) ≤ 𝑟 ) |
| 128 | 119 127 | reximddv | ⊢ ( ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) ∧ ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( abs ‘ 𝑥 ) ≤ 𝑟 ) |
| 129 | 128 | ex | ⊢ ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) → ( ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( abs ‘ 𝑥 ) ≤ 𝑟 ) ) |
| 130 | 129 | exlimdv | ⊢ ( ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) ∧ ∪ 𝑇 = ∪ 𝑠 ) → ( ∃ 𝑓 ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( abs ‘ 𝑥 ) ≤ 𝑟 ) ) |
| 131 | 130 | expimpd | ⊢ ( ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) ∧ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ) → ( ( ∪ 𝑇 = ∪ 𝑠 ∧ ∃ 𝑓 ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( abs ‘ 𝑥 ) ≤ 𝑟 ) ) |
| 132 | 131 | rexlimdva | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) → ( ∃ 𝑠 ∈ ( 𝒫 𝑇 ∩ Fin ) ( ∪ 𝑇 = ∪ 𝑠 ∧ ∃ 𝑓 ( 𝑓 : 𝑠 ⟶ ℝ+ ∧ ∀ 𝑢 ∈ 𝑠 𝑢 = ( ( 0 ( ball ‘ ( abs ∘ − ) ) ( 𝑓 ‘ 𝑢 ) ) ∩ 𝑋 ) ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( abs ‘ 𝑥 ) ≤ 𝑟 ) ) |
| 133 | 72 132 | mpd | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) → ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( abs ‘ 𝑥 ) ≤ 𝑟 ) |
| 134 | 10 133 | jca | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑇 ∈ Comp ) → ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( abs ‘ 𝑥 ) ≤ 𝑟 ) ) |
| 135 | eqid | ⊢ ( 𝑦 ∈ ℝ , 𝑧 ∈ ℝ ↦ ( 𝑦 + ( i · 𝑧 ) ) ) = ( 𝑦 ∈ ℝ , 𝑧 ∈ ℝ ↦ ( 𝑦 + ( i · 𝑧 ) ) ) | |
| 136 | eqid | ⊢ ( ( 𝑦 ∈ ℝ , 𝑧 ∈ ℝ ↦ ( 𝑦 + ( i · 𝑧 ) ) ) “ ( ( - 𝑟 [,] 𝑟 ) × ( - 𝑟 [,] 𝑟 ) ) ) = ( ( 𝑦 ∈ ℝ , 𝑧 ∈ ℝ ↦ ( 𝑦 + ( i · 𝑧 ) ) ) “ ( ( - 𝑟 [,] 𝑟 ) × ( - 𝑟 [,] 𝑟 ) ) ) | |
| 137 | 1 2 135 136 | cnheiborlem | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( abs ‘ 𝑥 ) ≤ 𝑟 ) ) → 𝑇 ∈ Comp ) |
| 138 | 137 | rexlimdvaa | ⊢ ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) → ( ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( abs ‘ 𝑥 ) ≤ 𝑟 → 𝑇 ∈ Comp ) ) |
| 139 | 138 | imp | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( abs ‘ 𝑥 ) ≤ 𝑟 ) → 𝑇 ∈ Comp ) |
| 140 | 139 | adantl | ⊢ ( ( 𝑋 ⊆ ℂ ∧ ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( abs ‘ 𝑥 ) ≤ 𝑟 ) ) → 𝑇 ∈ Comp ) |
| 141 | 134 140 | impbida | ⊢ ( 𝑋 ⊆ ℂ → ( 𝑇 ∈ Comp ↔ ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( abs ‘ 𝑥 ) ≤ 𝑟 ) ) ) |