This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of a complete metric space is complete iff it is closed in the parent space. Theorem 1.4-7 of Kreyszig p. 30. (Contributed by NM, 28-Jan-2008) (Revised by Mario Carneiro, 15-Oct-2015) (Proof shortened by AV, 9-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metsscmetcld.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | cmetss | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ↔ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metsscmetcld.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 3 | 1 | metsscmetcld | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) → 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) |
| 4 | 2 3 | sylan | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) → 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) |
| 5 | 2 | adantr | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 6 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 7 | 6 | cldss | ⊢ ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) → 𝑌 ⊆ ∪ 𝐽 ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑌 ⊆ ∪ 𝐽 ) |
| 9 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 10 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 11 | 5 9 10 | 3syl | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑋 = ∪ 𝐽 ) |
| 12 | 8 11 | sseqtrrd | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑌 ⊆ 𝑋 ) |
| 13 | metres2 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( Met ‘ 𝑌 ) ) | |
| 14 | 5 12 13 | syl2anc | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( Met ‘ 𝑌 ) ) |
| 15 | 2 9 | syl | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 17 | 12 | adantr | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝑌 ⊆ 𝑋 ) |
| 18 | eqid | ⊢ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) = ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) | |
| 19 | eqid | ⊢ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) | |
| 20 | 18 1 19 | metrest | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
| 21 | 16 17 20 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( 𝐽 ↾t 𝑌 ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
| 22 | 21 | eqcomd | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) = ( 𝐽 ↾t 𝑌 ) ) |
| 23 | metxmet | ⊢ ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( Met ‘ 𝑌 ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) | |
| 24 | 14 23 | syl | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) |
| 25 | cfilfil | ⊢ ( ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝑓 ∈ ( Fil ‘ 𝑌 ) ) | |
| 26 | 24 25 | sylan | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝑓 ∈ ( Fil ‘ 𝑌 ) ) |
| 27 | elfvdm | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝑋 ∈ dom CMet ) | |
| 28 | 27 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝑋 ∈ dom CMet ) |
| 29 | trfg | ⊢ ( ( 𝑓 ∈ ( Fil ‘ 𝑌 ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ dom CMet ) → ( ( 𝑋 filGen 𝑓 ) ↾t 𝑌 ) = 𝑓 ) | |
| 30 | 26 17 28 29 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( ( 𝑋 filGen 𝑓 ) ↾t 𝑌 ) = 𝑓 ) |
| 31 | 30 | eqcomd | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝑓 = ( ( 𝑋 filGen 𝑓 ) ↾t 𝑌 ) ) |
| 32 | 22 31 | oveq12d | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) fLim 𝑓 ) = ( ( 𝐽 ↾t 𝑌 ) fLim ( ( 𝑋 filGen 𝑓 ) ↾t 𝑌 ) ) ) |
| 33 | 1 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 34 | 16 33 | syl | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 35 | filfbas | ⊢ ( 𝑓 ∈ ( Fil ‘ 𝑌 ) → 𝑓 ∈ ( fBas ‘ 𝑌 ) ) | |
| 36 | 26 35 | syl | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝑓 ∈ ( fBas ‘ 𝑌 ) ) |
| 37 | filsspw | ⊢ ( 𝑓 ∈ ( Fil ‘ 𝑌 ) → 𝑓 ⊆ 𝒫 𝑌 ) | |
| 38 | 26 37 | syl | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝑓 ⊆ 𝒫 𝑌 ) |
| 39 | 17 | sspwd | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝒫 𝑌 ⊆ 𝒫 𝑋 ) |
| 40 | 38 39 | sstrd | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝑓 ⊆ 𝒫 𝑋 ) |
| 41 | fbasweak | ⊢ ( ( 𝑓 ∈ ( fBas ‘ 𝑌 ) ∧ 𝑓 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ dom CMet ) → 𝑓 ∈ ( fBas ‘ 𝑋 ) ) | |
| 42 | 36 40 28 41 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝑓 ∈ ( fBas ‘ 𝑋 ) ) |
| 43 | fgcl | ⊢ ( 𝑓 ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen 𝑓 ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 44 | 42 43 | syl | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( 𝑋 filGen 𝑓 ) ∈ ( Fil ‘ 𝑋 ) ) |
| 45 | ssfg | ⊢ ( 𝑓 ∈ ( fBas ‘ 𝑋 ) → 𝑓 ⊆ ( 𝑋 filGen 𝑓 ) ) | |
| 46 | 42 45 | syl | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝑓 ⊆ ( 𝑋 filGen 𝑓 ) ) |
| 47 | filtop | ⊢ ( 𝑓 ∈ ( Fil ‘ 𝑌 ) → 𝑌 ∈ 𝑓 ) | |
| 48 | 26 47 | syl | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝑌 ∈ 𝑓 ) |
| 49 | 46 48 | sseldd | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝑌 ∈ ( 𝑋 filGen 𝑓 ) ) |
| 50 | flimrest | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑋 filGen 𝑓 ) ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ ( 𝑋 filGen 𝑓 ) ) → ( ( 𝐽 ↾t 𝑌 ) fLim ( ( 𝑋 filGen 𝑓 ) ↾t 𝑌 ) ) = ( ( 𝐽 fLim ( 𝑋 filGen 𝑓 ) ) ∩ 𝑌 ) ) | |
| 51 | 34 44 49 50 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( ( 𝐽 ↾t 𝑌 ) fLim ( ( 𝑋 filGen 𝑓 ) ↾t 𝑌 ) ) = ( ( 𝐽 fLim ( 𝑋 filGen 𝑓 ) ) ∩ 𝑌 ) ) |
| 52 | flimclsi | ⊢ ( 𝑌 ∈ ( 𝑋 filGen 𝑓 ) → ( 𝐽 fLim ( 𝑋 filGen 𝑓 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑌 ) ) | |
| 53 | 49 52 | syl | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( 𝐽 fLim ( 𝑋 filGen 𝑓 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑌 ) ) |
| 54 | cldcls | ⊢ ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑌 ) = 𝑌 ) | |
| 55 | 54 | ad2antlr | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑌 ) = 𝑌 ) |
| 56 | 53 55 | sseqtrd | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( 𝐽 fLim ( 𝑋 filGen 𝑓 ) ) ⊆ 𝑌 ) |
| 57 | dfss2 | ⊢ ( ( 𝐽 fLim ( 𝑋 filGen 𝑓 ) ) ⊆ 𝑌 ↔ ( ( 𝐽 fLim ( 𝑋 filGen 𝑓 ) ) ∩ 𝑌 ) = ( 𝐽 fLim ( 𝑋 filGen 𝑓 ) ) ) | |
| 58 | 56 57 | sylib | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( ( 𝐽 fLim ( 𝑋 filGen 𝑓 ) ) ∩ 𝑌 ) = ( 𝐽 fLim ( 𝑋 filGen 𝑓 ) ) ) |
| 59 | 32 51 58 | 3eqtrd | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) fLim 𝑓 ) = ( 𝐽 fLim ( 𝑋 filGen 𝑓 ) ) ) |
| 60 | simpll | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | |
| 61 | 5 9 | syl | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 62 | cfilresi | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( 𝑋 filGen 𝑓 ) ∈ ( CauFil ‘ 𝐷 ) ) | |
| 63 | 61 62 | sylan | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( 𝑋 filGen 𝑓 ) ∈ ( CauFil ‘ 𝐷 ) ) |
| 64 | 1 | cmetcvg | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑋 filGen 𝑓 ) ∈ ( CauFil ‘ 𝐷 ) ) → ( 𝐽 fLim ( 𝑋 filGen 𝑓 ) ) ≠ ∅ ) |
| 65 | 60 63 64 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( 𝐽 fLim ( 𝑋 filGen 𝑓 ) ) ≠ ∅ ) |
| 66 | 59 65 | eqnetrd | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) fLim 𝑓 ) ≠ ∅ ) |
| 67 | 66 | ralrimiva | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ∀ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) fLim 𝑓 ) ≠ ∅ ) |
| 68 | 19 | iscmet | ⊢ ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ↔ ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( Met ‘ 𝑌 ) ∧ ∀ 𝑓 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) fLim 𝑓 ) ≠ ∅ ) ) |
| 69 | 14 67 68 | sylanbrc | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) |
| 70 | 4 69 | impbida | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ↔ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ) |