This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two metrics are strongly equivalent, one is complete iff the other is. Unlike equivcau , metss2 , this theorem does not have a one-directional form - it is possible for a metric C that is strongly finer than the complete metric D to be incomplete and vice versa. Consider D = the metric on RR induced by the usual homeomorphism from ( 0 , 1 ) against the usual metric C on RR and against the discrete metric E on RR . Then both C and E are complete but D is not, and C is strongly finer than D , which is strongly finer than E . (Contributed by Mario Carneiro, 15-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | equivcmet.1 | ⊢ ( 𝜑 → 𝐶 ∈ ( Met ‘ 𝑋 ) ) | |
| equivcmet.2 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | ||
| equivcmet.3 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| equivcmet.4 | ⊢ ( 𝜑 → 𝑆 ∈ ℝ+ ) | ||
| equivcmet.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ) | ||
| equivcmet.6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑦 ) ≤ ( 𝑆 · ( 𝑥 𝐶 𝑦 ) ) ) | ||
| Assertion | equivcmet | ⊢ ( 𝜑 → ( 𝐶 ∈ ( CMet ‘ 𝑋 ) ↔ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equivcmet.1 | ⊢ ( 𝜑 → 𝐶 ∈ ( Met ‘ 𝑋 ) ) | |
| 2 | equivcmet.2 | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 3 | equivcmet.3 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 4 | equivcmet.4 | ⊢ ( 𝜑 → 𝑆 ∈ ℝ+ ) | |
| 5 | equivcmet.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐶 𝑦 ) ≤ ( 𝑅 · ( 𝑥 𝐷 𝑦 ) ) ) | |
| 6 | equivcmet.6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑦 ) ≤ ( 𝑆 · ( 𝑥 𝐶 𝑦 ) ) ) | |
| 7 | 1 2 | 2thd | ⊢ ( 𝜑 → ( 𝐶 ∈ ( Met ‘ 𝑋 ) ↔ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
| 8 | 2 1 4 6 | equivcfil | ⊢ ( 𝜑 → ( CauFil ‘ 𝐶 ) ⊆ ( CauFil ‘ 𝐷 ) ) |
| 9 | 1 2 3 5 | equivcfil | ⊢ ( 𝜑 → ( CauFil ‘ 𝐷 ) ⊆ ( CauFil ‘ 𝐶 ) ) |
| 10 | 8 9 | eqssd | ⊢ ( 𝜑 → ( CauFil ‘ 𝐶 ) = ( CauFil ‘ 𝐷 ) ) |
| 11 | eqid | ⊢ ( MetOpen ‘ 𝐶 ) = ( MetOpen ‘ 𝐶 ) | |
| 12 | eqid | ⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) | |
| 13 | 11 12 1 2 3 5 | metss2 | ⊢ ( 𝜑 → ( MetOpen ‘ 𝐶 ) ⊆ ( MetOpen ‘ 𝐷 ) ) |
| 14 | 12 11 2 1 4 6 | metss2 | ⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) ⊆ ( MetOpen ‘ 𝐶 ) ) |
| 15 | 13 14 | eqssd | ⊢ ( 𝜑 → ( MetOpen ‘ 𝐶 ) = ( MetOpen ‘ 𝐷 ) ) |
| 16 | 15 | oveq1d | ⊢ ( 𝜑 → ( ( MetOpen ‘ 𝐶 ) fLim 𝑓 ) = ( ( MetOpen ‘ 𝐷 ) fLim 𝑓 ) ) |
| 17 | 16 | neeq1d | ⊢ ( 𝜑 → ( ( ( MetOpen ‘ 𝐶 ) fLim 𝑓 ) ≠ ∅ ↔ ( ( MetOpen ‘ 𝐷 ) fLim 𝑓 ) ≠ ∅ ) ) |
| 18 | 10 17 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑓 ∈ ( CauFil ‘ 𝐶 ) ( ( MetOpen ‘ 𝐶 ) fLim 𝑓 ) ≠ ∅ ↔ ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 ) fLim 𝑓 ) ≠ ∅ ) ) |
| 19 | 7 18 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐶 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( CauFil ‘ 𝐶 ) ( ( MetOpen ‘ 𝐶 ) fLim 𝑓 ) ≠ ∅ ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 ) fLim 𝑓 ) ≠ ∅ ) ) ) |
| 20 | 11 | iscmet | ⊢ ( 𝐶 ∈ ( CMet ‘ 𝑋 ) ↔ ( 𝐶 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( CauFil ‘ 𝐶 ) ( ( MetOpen ‘ 𝐶 ) fLim 𝑓 ) ≠ ∅ ) ) |
| 21 | 12 | iscmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 ) fLim 𝑓 ) ≠ ∅ ) ) |
| 22 | 19 20 21 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐶 ∈ ( CMet ‘ 𝑋 ) ↔ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ) |