This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The convergence of a Cauchy filter in a complete metric space. (Contributed by Mario Carneiro, 14-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscmet.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | cmetcvg | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → ( 𝐽 fLim 𝐹 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmet.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1 | iscmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( 𝐽 fLim 𝑓 ) ≠ ∅ ) ) |
| 3 | 2 | simprbi | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( 𝐽 fLim 𝑓 ) ≠ ∅ ) |
| 4 | oveq2 | ⊢ ( 𝑓 = 𝐹 → ( 𝐽 fLim 𝑓 ) = ( 𝐽 fLim 𝐹 ) ) | |
| 5 | 4 | neeq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝐽 fLim 𝑓 ) ≠ ∅ ↔ ( 𝐽 fLim 𝐹 ) ≠ ∅ ) ) |
| 6 | 5 | rspccva | ⊢ ( ( ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( 𝐽 fLim 𝑓 ) ≠ ∅ ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → ( 𝐽 fLim 𝐹 ) ≠ ∅ ) |
| 7 | 3 6 | sylan | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → ( 𝐽 fLim 𝐹 ) ≠ ∅ ) |