This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter base on any set is also a filter base on any larger set. (Contributed by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fbasweak | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐹 ∈ ( fBas ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐹 ⊆ 𝒫 𝑌 ) | |
| 2 | simp1 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 3 | elfvdm | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝑋 ∈ dom fBas ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝑋 ∈ dom fBas ) |
| 5 | isfbas | ⊢ ( 𝑋 ∈ dom fBas → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ↔ ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) |
| 7 | 2 6 | mpbid | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐹 ⊆ 𝒫 𝑋 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) |
| 8 | 7 | simprd | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) |
| 9 | isfbas | ⊢ ( 𝑌 ∈ 𝑉 → ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ↔ ( 𝐹 ⊆ 𝒫 𝑌 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) | |
| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ↔ ( 𝐹 ⊆ 𝒫 𝑌 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) |
| 11 | 1 8 10 | mpbir2and | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝒫 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐹 ∈ ( fBas ‘ 𝑌 ) ) |