This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of limit points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flimrest | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝐽 ↾t 𝑌 ) fLim ( 𝐹 ↾t 𝑌 ) ) = ( ( 𝐽 fLim 𝐹 ) ∩ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | filelss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝑌 ⊆ 𝑋 ) | |
| 3 | 2 | 3adant1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝑌 ⊆ 𝑋 ) |
| 4 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) | |
| 5 | 1 3 4 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 6 | filfbas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 8 | simp3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝑌 ∈ 𝐹 ) | |
| 9 | fbncp | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) | |
| 10 | 7 8 9 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) |
| 11 | simp2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 12 | trfil3 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ↔ ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) ) | |
| 13 | 11 3 12 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ↔ ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) ) |
| 14 | 10 13 | mpbird | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ) |
| 15 | flimopn | ⊢ ( ( ( 𝐽 ↾t 𝑌 ) ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ) → ( 𝑥 ∈ ( ( 𝐽 ↾t 𝑌 ) fLim ( 𝐹 ↾t 𝑌 ) ) ↔ ( 𝑥 ∈ 𝑌 ∧ ∀ 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ( 𝑥 ∈ 𝑦 → 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ) ) ) ) | |
| 16 | 5 14 15 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑥 ∈ ( ( 𝐽 ↾t 𝑌 ) fLim ( 𝐹 ↾t 𝑌 ) ) ↔ ( 𝑥 ∈ 𝑌 ∧ ∀ 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ( 𝑥 ∈ 𝑦 → 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ) ) ) ) |
| 17 | simpll2 | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝐽 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 18 | simpll3 | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝐽 ) → 𝑌 ∈ 𝐹 ) | |
| 19 | elrestr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) → ( 𝑧 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) ) | |
| 20 | 19 | 3expia | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑧 ∈ 𝐹 → ( 𝑧 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) ) ) |
| 21 | 17 18 20 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝑧 ∈ 𝐹 → ( 𝑧 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) ) ) |
| 22 | trfilss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝐹 ↾t 𝑌 ) ⊆ 𝐹 ) | |
| 23 | 17 18 22 | syl2anc | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝐹 ↾t 𝑌 ) ⊆ 𝐹 ) |
| 24 | 23 | sseld | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝐽 ) → ( ( 𝑧 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) → ( 𝑧 ∩ 𝑌 ) ∈ 𝐹 ) ) |
| 25 | inss1 | ⊢ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑧 | |
| 26 | 25 | a1i | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝑧 ∩ 𝑌 ) ⊆ 𝑧 ) |
| 27 | simpl1 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 28 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐽 ) → 𝑧 ⊆ 𝑋 ) | |
| 29 | 27 28 | sylan | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝐽 ) → 𝑧 ⊆ 𝑋 ) |
| 30 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( ( 𝑧 ∩ 𝑌 ) ∈ 𝐹 ∧ 𝑧 ⊆ 𝑋 ∧ ( 𝑧 ∩ 𝑌 ) ⊆ 𝑧 ) ) → 𝑧 ∈ 𝐹 ) | |
| 31 | 30 | 3exp2 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑧 ∩ 𝑌 ) ∈ 𝐹 → ( 𝑧 ⊆ 𝑋 → ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑧 → 𝑧 ∈ 𝐹 ) ) ) ) |
| 32 | 31 | com24 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑧 ∩ 𝑌 ) ⊆ 𝑧 → ( 𝑧 ⊆ 𝑋 → ( ( 𝑧 ∩ 𝑌 ) ∈ 𝐹 → 𝑧 ∈ 𝐹 ) ) ) ) |
| 33 | 17 26 29 32 | syl3c | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝐽 ) → ( ( 𝑧 ∩ 𝑌 ) ∈ 𝐹 → 𝑧 ∈ 𝐹 ) ) |
| 34 | 24 33 | syld | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝐽 ) → ( ( 𝑧 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) → 𝑧 ∈ 𝐹 ) ) |
| 35 | 21 34 | impbid | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝑧 ∈ 𝐹 ↔ ( 𝑧 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) ) ) |
| 36 | 35 | imbi2d | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹 ) ↔ ( 𝑥 ∈ 𝑧 → ( 𝑧 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) ) ) ) |
| 37 | 36 | ralbidva | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹 ) ↔ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ( 𝑧 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) ) ) ) |
| 38 | simpl2 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 39 | 3 | sselda | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) |
| 40 | flimopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹 ) ) ) ) | |
| 41 | 40 | baibd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹 ) ) ) |
| 42 | 27 38 39 41 | syl21anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → 𝑧 ∈ 𝐹 ) ) ) |
| 43 | vex | ⊢ 𝑧 ∈ V | |
| 44 | 43 | inex1 | ⊢ ( 𝑧 ∩ 𝑌 ) ∈ V |
| 45 | 44 | a1i | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝑧 ∩ 𝑌 ) ∈ V ) |
| 46 | simpl3 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑌 ∈ 𝐹 ) | |
| 47 | elrest | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑧 ∈ 𝐽 𝑦 = ( 𝑧 ∩ 𝑌 ) ) ) | |
| 48 | 27 46 47 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑧 ∈ 𝐽 𝑦 = ( 𝑧 ∩ 𝑌 ) ) ) |
| 49 | eleq2 | ⊢ ( 𝑦 = ( 𝑧 ∩ 𝑌 ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ( 𝑧 ∩ 𝑌 ) ) ) | |
| 50 | elin | ⊢ ( 𝑥 ∈ ( 𝑧 ∩ 𝑌 ) ↔ ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝑌 ) ) | |
| 51 | 50 | rbaib | ⊢ ( 𝑥 ∈ 𝑌 → ( 𝑥 ∈ ( 𝑧 ∩ 𝑌 ) ↔ 𝑥 ∈ 𝑧 ) ) |
| 52 | 51 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝑥 ∈ ( 𝑧 ∩ 𝑌 ) ↔ 𝑥 ∈ 𝑧 ) ) |
| 53 | 49 52 | sylan9bbr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑦 = ( 𝑧 ∩ 𝑌 ) ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) ) |
| 54 | eleq1 | ⊢ ( 𝑦 = ( 𝑧 ∩ 𝑌 ) → ( 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ↔ ( 𝑧 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) ) ) | |
| 55 | 54 | adantl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑦 = ( 𝑧 ∩ 𝑌 ) ) → ( 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ↔ ( 𝑧 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) ) ) |
| 56 | 53 55 | imbi12d | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑦 = ( 𝑧 ∩ 𝑌 ) ) → ( ( 𝑥 ∈ 𝑦 → 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ) ↔ ( 𝑥 ∈ 𝑧 → ( 𝑧 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) ) ) ) |
| 57 | 45 48 56 | ralxfr2d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( ∀ 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ( 𝑥 ∈ 𝑦 → 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ) ↔ ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 → ( 𝑧 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) ) ) ) |
| 58 | 37 42 57 | 3bitr4d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ∀ 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ( 𝑥 ∈ 𝑦 → 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ) ) ) |
| 59 | 58 | pm5.32da | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝑥 ∈ 𝑌 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ↔ ( 𝑥 ∈ 𝑌 ∧ ∀ 𝑦 ∈ ( 𝐽 ↾t 𝑌 ) ( 𝑥 ∈ 𝑦 → 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ) ) ) ) |
| 60 | 16 59 | bitr4d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑥 ∈ ( ( 𝐽 ↾t 𝑌 ) fLim ( 𝐹 ↾t 𝑌 ) ) ↔ ( 𝑥 ∈ 𝑌 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ) ) |
| 61 | ancom | ⊢ ( ( 𝑥 ∈ 𝑌 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ↔ ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ) | |
| 62 | elin | ⊢ ( 𝑥 ∈ ( ( 𝐽 fLim 𝐹 ) ∩ 𝑌 ) ↔ ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑥 ∈ 𝑌 ) ) | |
| 63 | 61 62 | bitr4i | ⊢ ( ( 𝑥 ∈ 𝑌 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ↔ 𝑥 ∈ ( ( 𝐽 fLim 𝐹 ) ∩ 𝑌 ) ) |
| 64 | 60 63 | bitrdi | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑥 ∈ ( ( 𝐽 ↾t 𝑌 ) fLim ( 𝐹 ↾t 𝑌 ) ) ↔ 𝑥 ∈ ( ( 𝐽 fLim 𝐹 ) ∩ 𝑌 ) ) ) |
| 65 | 64 | eqrdv | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝐽 ↾t 𝑌 ) fLim ( 𝐹 ↾t 𝑌 ) ) = ( ( 𝐽 fLim 𝐹 ) ∩ 𝑌 ) ) |