This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complete subspace of a metric space is closed in the parent space. Formerly part of proof for cmetss . (Contributed by NM, 28-Jan-2008) (Revised by Mario Carneiro, 15-Oct-2015) (Revised by AV, 9-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metsscmetcld.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | metsscmetcld | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) → 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metsscmetcld.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 4 | 1 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 5 | 3 4 | syl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 6 | resss | ⊢ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ⊆ 𝐷 | |
| 7 | dmss | ⊢ ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ⊆ 𝐷 → dom ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ⊆ dom 𝐷 ) | |
| 8 | dmss | ⊢ ( dom ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ⊆ dom 𝐷 → dom dom ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ⊆ dom dom 𝐷 ) | |
| 9 | 6 7 8 | mp2b | ⊢ dom dom ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ⊆ dom dom 𝐷 |
| 10 | cmetmet | ⊢ ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( Met ‘ 𝑌 ) ) | |
| 11 | metdmdm | ⊢ ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( Met ‘ 𝑌 ) → 𝑌 = dom dom ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) → 𝑌 = dom dom ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) |
| 13 | metdmdm | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝑋 = dom dom 𝐷 ) | |
| 14 | sseq12 | ⊢ ( ( 𝑌 = dom dom ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∧ 𝑋 = dom dom 𝐷 ) → ( 𝑌 ⊆ 𝑋 ↔ dom dom ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ⊆ dom dom 𝐷 ) ) | |
| 15 | 12 13 14 | syl2anr | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) → ( 𝑌 ⊆ 𝑋 ↔ dom dom ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ⊆ dom dom 𝐷 ) ) |
| 16 | 9 15 | mpbiri | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) → 𝑌 ⊆ 𝑋 ) |
| 17 | flimcls | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑌 ) ↔ ∃ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) | |
| 18 | 5 16 17 | syl2anc | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑌 ) ↔ ∃ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) |
| 19 | simprrr | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) | |
| 20 | 3 | adantr | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 21 | 1 | methaus | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Haus ) |
| 22 | hausflimi | ⊢ ( 𝐽 ∈ Haus → ∃* 𝑥 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) | |
| 23 | 20 21 22 | 3syl | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → ∃* 𝑥 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) |
| 24 | 20 4 | syl | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 25 | simprl | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → 𝑓 ∈ ( Fil ‘ 𝑋 ) ) | |
| 26 | simprrl | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → 𝑌 ∈ 𝑓 ) | |
| 27 | flimrest | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑓 ) → ( ( 𝐽 ↾t 𝑌 ) fLim ( 𝑓 ↾t 𝑌 ) ) = ( ( 𝐽 fLim 𝑓 ) ∩ 𝑌 ) ) | |
| 28 | 24 25 26 27 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → ( ( 𝐽 ↾t 𝑌 ) fLim ( 𝑓 ↾t 𝑌 ) ) = ( ( 𝐽 fLim 𝑓 ) ∩ 𝑌 ) ) |
| 29 | 16 | adantr | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → 𝑌 ⊆ 𝑋 ) |
| 30 | eqid | ⊢ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) = ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) | |
| 31 | eqid | ⊢ ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) | |
| 32 | 30 1 31 | metrest | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
| 33 | 20 29 32 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → ( 𝐽 ↾t 𝑌 ) = ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
| 34 | 33 | oveq1d | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → ( ( 𝐽 ↾t 𝑌 ) fLim ( 𝑓 ↾t 𝑌 ) ) = ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) fLim ( 𝑓 ↾t 𝑌 ) ) ) |
| 35 | 28 34 | eqtr3d | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → ( ( 𝐽 fLim 𝑓 ) ∩ 𝑌 ) = ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) fLim ( 𝑓 ↾t 𝑌 ) ) ) |
| 36 | simplr | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) | |
| 37 | 1 | flimcfil | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) → 𝑓 ∈ ( CauFil ‘ 𝐷 ) ) |
| 38 | 20 19 37 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → 𝑓 ∈ ( CauFil ‘ 𝐷 ) ) |
| 39 | cfilres | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑓 ) → ( 𝑓 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝑓 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) | |
| 40 | 20 25 26 39 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → ( 𝑓 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝑓 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
| 41 | 38 40 | mpbid | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → ( 𝑓 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
| 42 | 31 | cmetcvg | ⊢ ( ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ∧ ( 𝑓 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) fLim ( 𝑓 ↾t 𝑌 ) ) ≠ ∅ ) |
| 43 | 36 41 42 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → ( ( MetOpen ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) fLim ( 𝑓 ↾t 𝑌 ) ) ≠ ∅ ) |
| 44 | 35 43 | eqnetrd | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → ( ( 𝐽 fLim 𝑓 ) ∩ 𝑌 ) ≠ ∅ ) |
| 45 | ndisj | ⊢ ( ( ( 𝐽 fLim 𝑓 ) ∩ 𝑌 ) ≠ ∅ ↔ ∃ 𝑥 ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ∧ 𝑥 ∈ 𝑌 ) ) | |
| 46 | 44 45 | sylib | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → ∃ 𝑥 ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ∧ 𝑥 ∈ 𝑌 ) ) |
| 47 | mopick | ⊢ ( ( ∃* 𝑥 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ∧ ∃ 𝑥 ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ∧ 𝑥 ∈ 𝑌 ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → 𝑥 ∈ 𝑌 ) ) | |
| 48 | 23 46 47 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝑓 ) → 𝑥 ∈ 𝑌 ) ) |
| 49 | 19 48 | mpd | ⊢ ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ∧ ( 𝑓 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) ) ) → 𝑥 ∈ 𝑌 ) |
| 50 | 49 | rexlimdvaa | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) → ( ∃ 𝑓 ∈ ( Fil ‘ 𝑋 ) ( 𝑌 ∈ 𝑓 ∧ 𝑥 ∈ ( 𝐽 fLim 𝑓 ) ) → 𝑥 ∈ 𝑌 ) ) |
| 51 | 18 50 | sylbid | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑌 ) → 𝑥 ∈ 𝑌 ) ) |
| 52 | 51 | ssrdv | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑌 ) ⊆ 𝑌 ) |
| 53 | 1 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 54 | 3 53 | syl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) → 𝐽 ∈ Top ) |
| 55 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 56 | 3 55 | syl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) → 𝑋 = ∪ 𝐽 ) |
| 57 | 16 56 | sseqtrd | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) → 𝑌 ⊆ ∪ 𝐽 ) |
| 58 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 59 | 58 | iscld4 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ ∪ 𝐽 ) → ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑌 ) ⊆ 𝑌 ) ) |
| 60 | 54 57 59 | syl2anc | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) → ( 𝑌 ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑌 ) ⊆ 𝑌 ) ) |
| 61 | 52 60 | mpbird | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) → 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) |