This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for metres . (Contributed by FL, 12-Oct-2006) (Proof shortened by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | metres2 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑅 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) ∈ ( Met ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 2 | xmetres2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑅 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) ∈ ( ∞Met ‘ 𝑅 ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑅 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) ∈ ( ∞Met ‘ 𝑅 ) ) |
| 4 | metf | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑅 ⊆ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| 6 | simpr | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑅 ⊆ 𝑋 ) → 𝑅 ⊆ 𝑋 ) | |
| 7 | xpss12 | ⊢ ( ( 𝑅 ⊆ 𝑋 ∧ 𝑅 ⊆ 𝑋 ) → ( 𝑅 × 𝑅 ) ⊆ ( 𝑋 × 𝑋 ) ) | |
| 8 | 6 7 | sylancom | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑅 ⊆ 𝑋 ) → ( 𝑅 × 𝑅 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 9 | 5 8 | fssresd | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑅 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) : ( 𝑅 × 𝑅 ) ⟶ ℝ ) |
| 10 | ismet2 | ⊢ ( ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) ∈ ( Met ‘ 𝑅 ) ↔ ( ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) ∈ ( ∞Met ‘ 𝑅 ) ∧ ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) : ( 𝑅 × 𝑅 ) ⟶ ℝ ) ) | |
| 11 | 3 9 10 | sylanbrc | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑅 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝑅 × 𝑅 ) ) ∈ ( Met ‘ 𝑅 ) ) |