This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cauchy filter on a metric subspace extends to a Cauchy filter in the larger space. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfilresi | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( 𝑋 filGen 𝐹 ) ∈ ( CauFil ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetres | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑌 ) ) ) | |
| 2 | iscfil2 | ⊢ ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑌 ) ) → ( 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ↔ ( 𝐹 ∈ ( Fil ‘ ( 𝑋 ∩ 𝑌 ) ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) ) ) | |
| 3 | 2 | simplbda | ⊢ ( ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) |
| 4 | 1 3 | sylan | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) |
| 5 | cfilfil | ⊢ ( ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝐹 ∈ ( Fil ‘ ( 𝑋 ∩ 𝑌 ) ) ) | |
| 6 | 1 5 | sylan | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝐹 ∈ ( Fil ‘ ( 𝑋 ∩ 𝑌 ) ) ) |
| 7 | filelss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ⊆ ( 𝑋 ∩ 𝑌 ) ) | |
| 8 | 6 7 | sylan | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ⊆ ( 𝑋 ∩ 𝑌 ) ) |
| 9 | inss2 | ⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑌 | |
| 10 | 8 9 | sstrdi | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ⊆ 𝑌 ) |
| 11 | 10 | sselda | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝐹 ) ∧ 𝑢 ∈ 𝑦 ) → 𝑢 ∈ 𝑌 ) |
| 12 | 10 | sselda | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝐹 ) ∧ 𝑣 ∈ 𝑦 ) → 𝑣 ∈ 𝑌 ) |
| 13 | 11 12 | anim12dan | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑢 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) ) |
| 14 | ovres | ⊢ ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) = ( 𝑢 𝐷 𝑣 ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑢 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) = ( 𝑢 𝐷 𝑣 ) ) |
| 16 | 15 | breq1d | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑢 ∈ 𝑦 ∧ 𝑣 ∈ 𝑦 ) ) → ( ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ↔ ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
| 17 | 16 | 2ralbidva | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ∧ 𝑦 ∈ 𝐹 ) → ( ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ↔ ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
| 18 | 17 | rexbidva | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( ∃ 𝑦 ∈ 𝐹 ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ↔ ∃ 𝑦 ∈ 𝐹 ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
| 19 | 18 | ralbidv | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
| 20 | 4 19 | mpbid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 𝐷 𝑣 ) < 𝑥 ) |
| 21 | filfbas | ⊢ ( 𝐹 ∈ ( Fil ‘ ( 𝑋 ∩ 𝑌 ) ) → 𝐹 ∈ ( fBas ‘ ( 𝑋 ∩ 𝑌 ) ) ) | |
| 22 | 6 21 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝐹 ∈ ( fBas ‘ ( 𝑋 ∩ 𝑌 ) ) ) |
| 23 | filsspw | ⊢ ( 𝐹 ∈ ( Fil ‘ ( 𝑋 ∩ 𝑌 ) ) → 𝐹 ⊆ 𝒫 ( 𝑋 ∩ 𝑌 ) ) | |
| 24 | 6 23 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝐹 ⊆ 𝒫 ( 𝑋 ∩ 𝑌 ) ) |
| 25 | inss1 | ⊢ ( 𝑋 ∩ 𝑌 ) ⊆ 𝑋 | |
| 26 | 25 | sspwi | ⊢ 𝒫 ( 𝑋 ∩ 𝑌 ) ⊆ 𝒫 𝑋 |
| 27 | 24 26 | sstrdi | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 28 | elfvdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) | |
| 29 | 28 | adantr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝑋 ∈ dom ∞Met ) |
| 30 | fbasweak | ⊢ ( ( 𝐹 ∈ ( fBas ‘ ( 𝑋 ∩ 𝑌 ) ) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ dom ∞Met ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 31 | 22 27 29 30 | syl3anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 32 | fgcfil | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝑋 filGen 𝐹 ) ∈ ( CauFil ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) | |
| 33 | 31 32 | syldan | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( ( 𝑋 filGen 𝐹 ) ∈ ( CauFil ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
| 34 | 20 33 | mpbird | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( 𝑋 filGen 𝐹 ) ∈ ( CauFil ‘ 𝐷 ) ) |