This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cmetcau . (Contributed by Mario Carneiro, 14-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmetcau.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| cmetcau.3 | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | ||
| cmetcau.4 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) | ||
| cmetcau.5 | ⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ 𝐷 ) ) | ||
| cmetcau.6 | ⊢ 𝐺 = ( 𝑥 ∈ ℕ ↦ if ( 𝑥 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑥 ) , 𝑃 ) ) | ||
| Assertion | cmetcaulem | ⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmetcau.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | cmetcau.3 | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | |
| 3 | cmetcau.4 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) | |
| 4 | cmetcau.5 | ⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ 𝐷 ) ) | |
| 5 | cmetcau.6 | ⊢ 𝐺 = ( 𝑥 ∈ ℕ ↦ if ( 𝑥 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑥 ) , 𝑃 ) ) | |
| 6 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 8 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 10 | 1 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 11 | 9 10 | syl | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 12 | 1z | ⊢ 1 ∈ ℤ | |
| 13 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 14 | 13 | uzfbas | ⊢ ( 1 ∈ ℤ → ( ℤ≥ “ ℕ ) ∈ ( fBas ‘ ℕ ) ) |
| 15 | 12 14 | mp1i | ⊢ ( 𝜑 → ( ℤ≥ “ ℕ ) ∈ ( fBas ‘ ℕ ) ) |
| 16 | fgcl | ⊢ ( ( ℤ≥ “ ℕ ) ∈ ( fBas ‘ ℕ ) → ( ℕ filGen ( ℤ≥ “ ℕ ) ) ∈ ( Fil ‘ ℕ ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → ( ℕ filGen ( ℤ≥ “ ℕ ) ) ∈ ( Fil ‘ ℕ ) ) |
| 18 | elfvdm | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝑋 ∈ dom CMet ) | |
| 19 | 2 18 | syl | ⊢ ( 𝜑 → 𝑋 ∈ dom CMet ) |
| 20 | cnex | ⊢ ℂ ∈ V | |
| 21 | 20 | a1i | ⊢ ( 𝜑 → ℂ ∈ V ) |
| 22 | caufpm | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) | |
| 23 | 9 4 22 | syl2anc | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
| 24 | elpm2g | ⊢ ( ( 𝑋 ∈ dom CMet ∧ ℂ ∈ V ) → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ↔ ( 𝐹 : dom 𝐹 ⟶ 𝑋 ∧ dom 𝐹 ⊆ ℂ ) ) ) | |
| 25 | 24 | simprbda | ⊢ ( ( ( 𝑋 ∈ dom CMet ∧ ℂ ∈ V ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → 𝐹 : dom 𝐹 ⟶ 𝑋 ) |
| 26 | 19 21 23 25 | syl21anc | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ 𝑋 ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → 𝐹 : dom 𝐹 ⟶ 𝑋 ) |
| 28 | 27 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) |
| 29 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → 𝑃 ∈ 𝑋 ) |
| 30 | 28 29 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → if ( 𝑥 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑥 ) , 𝑃 ) ∈ 𝑋 ) |
| 31 | 30 5 | fmptd | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ 𝑋 ) |
| 32 | flfval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( ℕ filGen ( ℤ≥ “ ℕ ) ) ∈ ( Fil ‘ ℕ ) ∧ 𝐺 : ℕ ⟶ 𝑋 ) → ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ) ) | |
| 33 | 11 17 31 32 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ) ) |
| 34 | eqid | ⊢ ( ℕ filGen ( ℤ≥ “ ℕ ) ) = ( ℕ filGen ( ℤ≥ “ ℕ ) ) | |
| 35 | 34 | fmfg | ⊢ ( ( 𝑋 ∈ dom CMet ∧ ( ℤ≥ “ ℕ ) ∈ ( fBas ‘ ℕ ) ∧ 𝐺 : ℕ ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) = ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ) |
| 36 | 19 15 31 35 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) = ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ) |
| 37 | 36 | oveq2d | ⊢ ( 𝜑 → ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ) ) |
| 38 | 33 37 | eqtr4d | ⊢ ( 𝜑 → ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) ) ) |
| 39 | biidd | ⊢ ( 𝑧 = 1 → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ) ) | |
| 40 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 41 | 13 9 40 | iscau3 | ⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑧 ) ) ) ) |
| 42 | 41 | simplbda | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑧 ) ) |
| 43 | 4 42 | mpdan | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑧 ) ) |
| 44 | simp1 | ⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑧 ) → 𝑘 ∈ dom 𝐹 ) | |
| 45 | 44 | ralimi | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑧 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ) |
| 46 | 45 | reximi | ⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑧 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ) |
| 47 | 46 | ralimi | ⊢ ( ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑧 ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ) |
| 48 | 43 47 | syl | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ) |
| 49 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 50 | 49 | a1i | ⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
| 51 | 39 48 50 | rspcdva | ⊢ ( 𝜑 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ) |
| 52 | dfss3 | ⊢ ( ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ) | |
| 53 | nnsscn | ⊢ ℕ ⊆ ℂ | |
| 54 | 31 53 | jctir | ⊢ ( 𝜑 → ( 𝐺 : ℕ ⟶ 𝑋 ∧ ℕ ⊆ ℂ ) ) |
| 55 | elpm2r | ⊢ ( ( ( 𝑋 ∈ dom CMet ∧ ℂ ∈ V ) ∧ ( 𝐺 : ℕ ⟶ 𝑋 ∧ ℕ ⊆ ℂ ) ) → 𝐺 ∈ ( 𝑋 ↑pm ℂ ) ) | |
| 56 | 19 21 54 55 | syl21anc | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 ↑pm ℂ ) ) |
| 57 | 56 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → 𝐺 ∈ ( 𝑋 ↑pm ℂ ) ) |
| 58 | eqid | ⊢ ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑗 ) | |
| 59 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 60 | nnz | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) | |
| 61 | 60 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → 𝑗 ∈ ℤ ) |
| 62 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 63 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 64 | 58 59 61 62 63 | iscau4 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) ) ) |
| 65 | 64 | simplbda | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) |
| 66 | 4 65 | mpidan | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) |
| 67 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → 𝑗 ∈ ℕ ) | |
| 68 | eluznn | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ ℕ ) | |
| 69 | 67 68 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ ℕ ) |
| 70 | eluznn | ⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → 𝑘 ∈ ℕ ) | |
| 71 | 5 30 | dmmptd | ⊢ ( 𝜑 → dom 𝐺 = ℕ ) |
| 72 | 71 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → dom 𝐺 = ℕ ) |
| 73 | 72 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → ( 𝑘 ∈ dom 𝐺 ↔ 𝑘 ∈ ℕ ) ) |
| 74 | 73 | biimpar | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ dom 𝐺 ) |
| 75 | 74 | a1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∈ dom 𝐹 → 𝑘 ∈ dom 𝐺 ) ) |
| 76 | idd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ) | |
| 77 | idd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) | |
| 78 | 75 76 77 | 3anim123d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) → ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) ) |
| 79 | 70 78 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) → ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) ) |
| 80 | 79 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) → ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) ) |
| 81 | 80 | ralimdva | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) ) |
| 82 | 69 81 | syldan | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) ) |
| 83 | 82 | reximdva | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → ( ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) → ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) ) |
| 84 | 83 | ralimdv | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → ( ∀ 𝑧 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) ) |
| 85 | 66 84 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) |
| 86 | eluznn | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) | |
| 87 | 67 86 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) |
| 88 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) | |
| 89 | 88 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ dom 𝐹 ) |
| 90 | iftrue | ⊢ ( 𝑘 ∈ dom 𝐹 → if ( 𝑘 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑘 ) , 𝑃 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 91 | 90 | adantl | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹 ) → if ( 𝑘 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑘 ) , 𝑃 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 92 | fvex | ⊢ ( 𝐹 ‘ 𝑘 ) ∈ V | |
| 93 | 91 92 | eqeltrdi | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹 ) → if ( 𝑘 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑘 ) , 𝑃 ) ∈ V ) |
| 94 | eleq1w | ⊢ ( 𝑥 = 𝑘 → ( 𝑥 ∈ dom 𝐹 ↔ 𝑘 ∈ dom 𝐹 ) ) | |
| 95 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 96 | 94 95 | ifbieq1d | ⊢ ( 𝑥 = 𝑘 → if ( 𝑥 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑥 ) , 𝑃 ) = if ( 𝑘 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑘 ) , 𝑃 ) ) |
| 97 | 96 5 | fvmptg | ⊢ ( ( 𝑘 ∈ ℕ ∧ if ( 𝑘 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑘 ) , 𝑃 ) ∈ V ) → ( 𝐺 ‘ 𝑘 ) = if ( 𝑘 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑘 ) , 𝑃 ) ) |
| 98 | 93 97 | syldan | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹 ) → ( 𝐺 ‘ 𝑘 ) = if ( 𝑘 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑘 ) , 𝑃 ) ) |
| 99 | 98 91 | eqtrd | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 100 | 87 89 99 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 101 | 88 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ dom 𝐹 ) |
| 102 | 69 101 | elind | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ ( ℕ ∩ dom 𝐹 ) ) |
| 103 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) ) | |
| 104 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 105 | 103 104 | eqeq12d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐺 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑚 ) ) ) |
| 106 | elin | ⊢ ( 𝑘 ∈ ( ℕ ∩ dom 𝐹 ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹 ) ) | |
| 107 | 106 99 | sylbi | ⊢ ( 𝑘 ∈ ( ℕ ∩ dom 𝐹 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 108 | 105 107 | vtoclga | ⊢ ( 𝑚 ∈ ( ℕ ∩ dom 𝐹 ) → ( 𝐺 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 109 | 102 108 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐺 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 110 | 58 59 61 100 109 | iscau4 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → ( 𝐺 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐺 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) ) ) |
| 111 | 57 85 110 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → 𝐺 ∈ ( Cau ‘ 𝐷 ) ) |
| 112 | 111 | expr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 → 𝐺 ∈ ( Cau ‘ 𝐷 ) ) ) |
| 113 | 52 112 | biimtrrid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 → 𝐺 ∈ ( Cau ‘ 𝐷 ) ) ) |
| 114 | 113 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 → 𝐺 ∈ ( Cau ‘ 𝐷 ) ) ) |
| 115 | 51 114 | mpd | ⊢ ( 𝜑 → 𝐺 ∈ ( Cau ‘ 𝐷 ) ) |
| 116 | eqid | ⊢ ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) = ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) | |
| 117 | 13 116 | caucfil | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 1 ∈ ℤ ∧ 𝐺 : ℕ ⟶ 𝑋 ) → ( 𝐺 ∈ ( Cau ‘ 𝐷 ) ↔ ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) ∈ ( CauFil ‘ 𝐷 ) ) ) |
| 118 | 9 40 31 117 | syl3anc | ⊢ ( 𝜑 → ( 𝐺 ∈ ( Cau ‘ 𝐷 ) ↔ ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) ∈ ( CauFil ‘ 𝐷 ) ) ) |
| 119 | 115 118 | mpbid | ⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) ∈ ( CauFil ‘ 𝐷 ) ) |
| 120 | 1 | cmetcvg | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) ∈ ( CauFil ‘ 𝐷 ) ) → ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) ) ≠ ∅ ) |
| 121 | 2 119 120 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) ) ≠ ∅ ) |
| 122 | 38 121 | eqnetrd | ⊢ ( 𝜑 → ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) ≠ ∅ ) |
| 123 | n0 | ⊢ ( ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) ) | |
| 124 | 122 123 | sylib | ⊢ ( 𝜑 → ∃ 𝑦 𝑦 ∈ ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) ) |
| 125 | 13 34 | lmflf | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 1 ∈ ℤ ∧ 𝐺 : ℕ ⟶ 𝑋 ) → ( 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ 𝑦 ∈ ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) ) ) |
| 126 | 11 40 31 125 | syl3anc | ⊢ ( 𝜑 → ( 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ 𝑦 ∈ ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) ) ) |
| 127 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
| 128 | lmcl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑦 ∈ 𝑋 ) | |
| 129 | 11 128 | sylan | ⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑦 ∈ 𝑋 ) |
| 130 | 1 9 13 40 | lmmbr3 | ⊢ ( 𝜑 → ( 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ ( 𝐺 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑦 ∈ 𝑋 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) ) |
| 131 | 130 | biimpa | ⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → ( 𝐺 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑦 ∈ 𝑋 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
| 132 | 131 | simp3d | ⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) |
| 133 | r19.26 | ⊢ ( ∀ 𝑧 ∈ ℝ+ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ↔ ( ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) | |
| 134 | 13 | rexanuz2 | ⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ↔ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
| 135 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → 𝑘 ∈ dom 𝐹 ) | |
| 136 | 99 | ad2ant2lr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 137 | simprr2 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ) | |
| 138 | 136 137 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 139 | 136 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) |
| 140 | simprr3 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) | |
| 141 | 139 140 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) |
| 142 | 135 138 141 | 3jca | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) |
| 143 | 142 | ex | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
| 144 | 86 143 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
| 145 | 144 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
| 146 | 145 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
| 147 | 146 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
| 148 | 134 147 | biimtrrid | ⊢ ( 𝜑 → ( ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
| 149 | 148 | ralimdv | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ℝ+ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
| 150 | 133 149 | biimtrrid | ⊢ ( 𝜑 → ( ( ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
| 151 | 48 150 | mpand | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
| 152 | 151 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → ( ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
| 153 | 132 152 | mpd | ⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) |
| 154 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 155 | 1zzd | ⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 1 ∈ ℤ ) | |
| 156 | 1 154 13 155 | lmmbr3 | ⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑦 ∈ 𝑋 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) ) |
| 157 | 127 129 153 156 | mpbir3and | ⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) |
| 158 | lmrel | ⊢ Rel ( ⇝𝑡 ‘ 𝐽 ) | |
| 159 | 158 | releldmi | ⊢ ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| 160 | 157 159 | syl | ⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| 161 | 160 | ex | ⊢ ( 𝜑 → ( 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 162 | 126 161 | sylbird | ⊢ ( 𝜑 → ( 𝑦 ∈ ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 163 | 162 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑦 𝑦 ∈ ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
| 164 | 124 163 | mpd | ⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |