This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological limit relation on functions can be written in terms of the filter limit along the filter generated by the upper integer sets. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmflf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| lmflf.2 | ⊢ 𝐿 = ( 𝑍 filGen ( ℤ≥ “ 𝑍 ) ) | ||
| Assertion | lmflf | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ 𝑃 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmflf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | lmflf.2 | ⊢ 𝐿 = ( 𝑍 filGen ( ℤ≥ “ 𝑍 ) ) | |
| 3 | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ | |
| 4 | ffn | ⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) | |
| 5 | 3 4 | ax-mp | ⊢ ℤ≥ Fn ℤ |
| 6 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 7 | 1 6 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 8 | imaeq2 | ⊢ ( 𝑦 = ( ℤ≥ ‘ 𝑗 ) → ( 𝐹 “ 𝑦 ) = ( 𝐹 “ ( ℤ≥ ‘ 𝑗 ) ) ) | |
| 9 | 8 | sseq1d | ⊢ ( 𝑦 = ( ℤ≥ ‘ 𝑗 ) → ( ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ↔ ( 𝐹 “ ( ℤ≥ ‘ 𝑗 ) ) ⊆ 𝑥 ) ) |
| 10 | 9 | rexima | ⊢ ( ( ℤ≥ Fn ℤ ∧ 𝑍 ⊆ ℤ ) → ( ∃ 𝑦 ∈ ( ℤ≥ “ 𝑍 ) ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ( 𝐹 “ ( ℤ≥ ‘ 𝑗 ) ) ⊆ 𝑥 ) ) |
| 11 | 5 7 10 | mp2an | ⊢ ( ∃ 𝑦 ∈ ( ℤ≥ “ 𝑍 ) ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ( 𝐹 “ ( ℤ≥ ‘ 𝑗 ) ) ⊆ 𝑥 ) |
| 12 | simpl3 | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) → 𝐹 : 𝑍 ⟶ 𝑋 ) | |
| 13 | 12 | ffund | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) → Fun 𝐹 ) |
| 14 | uzss | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑗 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 15 | 14 1 | eleq2s | ⊢ ( 𝑗 ∈ 𝑍 → ( ℤ≥ ‘ 𝑗 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 16 | 15 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑗 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 17 | 12 | fdmd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) → dom 𝐹 = 𝑍 ) |
| 18 | 17 1 | eqtrdi | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) → dom 𝐹 = ( ℤ≥ ‘ 𝑀 ) ) |
| 19 | 16 18 | sseqtrrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) |
| 20 | funimass4 | ⊢ ( ( Fun 𝐹 ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( ℤ≥ ‘ 𝑗 ) ) ⊆ 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ) ) | |
| 21 | 13 19 20 | syl2anc | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝐹 “ ( ℤ≥ ‘ 𝑗 ) ) ⊆ 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ) ) |
| 22 | 21 | rexbidva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( ∃ 𝑗 ∈ 𝑍 ( 𝐹 “ ( ℤ≥ ‘ 𝑗 ) ) ⊆ 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ) ) |
| 23 | 11 22 | bitr2id | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ↔ ∃ 𝑦 ∈ ( ℤ≥ “ 𝑍 ) ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) |
| 24 | 23 | imbi2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( ( 𝑃 ∈ 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ) ↔ ( 𝑃 ∈ 𝑥 → ∃ 𝑦 ∈ ( ℤ≥ “ 𝑍 ) ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ) |
| 25 | 24 | ralbidv | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑦 ∈ ( ℤ≥ “ 𝑍 ) ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ) |
| 26 | 25 | anbi2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ) ) ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑦 ∈ ( ℤ≥ “ 𝑍 ) ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ) ) |
| 27 | simp1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 28 | simp2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → 𝑀 ∈ ℤ ) | |
| 29 | simp3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → 𝐹 : 𝑍 ⟶ 𝑋 ) | |
| 30 | eqidd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 31 | 27 1 28 29 30 | lmbrf | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑥 ) ) ) ) |
| 32 | 1 | uzfbas | ⊢ ( 𝑀 ∈ ℤ → ( ℤ≥ “ 𝑍 ) ∈ ( fBas ‘ 𝑍 ) ) |
| 33 | 2 | flffbas | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( ℤ≥ “ 𝑍 ) ∈ ( fBas ‘ 𝑍 ) ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( 𝑃 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑦 ∈ ( ℤ≥ “ 𝑍 ) ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ) ) |
| 34 | 32 33 | syl3an2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( 𝑃 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑦 ∈ ( ℤ≥ “ 𝑍 ) ( 𝐹 “ 𝑦 ) ⊆ 𝑥 ) ) ) ) |
| 35 | 26 31 34 | 3bitr4d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ 𝑃 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) ) |