This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cauchy sequence predicate can be expressed in terms of the Cauchy filter predicate for a suitably chosen filter. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caucfil.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| caucfil.2 | ⊢ 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ ( ℤ≥ “ 𝑍 ) ) | ||
| Assertion | caucfil | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ 𝐿 ∈ ( CauFil ‘ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucfil.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | caucfil.2 | ⊢ 𝐿 = ( ( 𝑋 FilMap 𝐹 ) ‘ ( ℤ≥ “ 𝑍 ) ) | |
| 3 | df-3an | ⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) | |
| 4 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 5 | 4 | adantll | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 6 | simpll3 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝐹 : 𝑍 ⟶ 𝑋 ) | |
| 7 | 6 | fdmd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → dom 𝐹 = 𝑍 ) |
| 8 | 5 7 | eleqtrrd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ dom 𝐹 ) |
| 9 | 6 5 | ffvelcdmd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 10 | 8 9 | jca | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ) |
| 11 | 10 | biantrurd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ↔ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 12 | uzss | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ℤ≥ ‘ 𝑘 ) ⊆ ( ℤ≥ ‘ 𝑗 ) ) | |
| 13 | 12 | adantl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ℤ≥ ‘ 𝑘 ) ⊆ ( ℤ≥ ‘ 𝑗 ) ) |
| 14 | 13 | sseld | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) |
| 15 | 14 | pm4.71rd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ↔ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) ) |
| 16 | 15 | imbi1d | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 17 | impexp | ⊢ ( ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) | |
| 18 | 16 17 | bitrdi | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) ) |
| 19 | 18 | ralbidv2 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 20 | 11 19 | bitr3d | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 21 | 3 20 | bitrid | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 22 | 21 | ralbidva | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 23 | r19.26-2 | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ↔ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ) | |
| 24 | eleq1w | ⊢ ( 𝑢 = 𝑘 → ( 𝑢 ∈ ( ℤ≥ ‘ 𝑚 ) ↔ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) | |
| 25 | fveq2 | ⊢ ( 𝑢 = 𝑘 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 26 | 25 | oveq2d | ⊢ ( 𝑢 = 𝑘 → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) = ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) ) |
| 27 | 26 | breq1d | ⊢ ( 𝑢 = 𝑘 → ( ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 28 | 24 27 | imbi12d | ⊢ ( 𝑢 = 𝑘 → ( ( 𝑢 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ) ↔ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ) |
| 29 | 28 | cbvralvw | ⊢ ( ∀ 𝑢 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑢 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 30 | 29 | ralbii | ⊢ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑢 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑢 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 31 | fveq2 | ⊢ ( 𝑚 = 𝑘 → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ 𝑘 ) ) | |
| 32 | 31 | eleq2d | ⊢ ( 𝑚 = 𝑘 → ( 𝑢 ∈ ( ℤ≥ ‘ 𝑚 ) ↔ 𝑢 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) |
| 33 | fveq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 34 | 33 | oveq1d | ⊢ ( 𝑚 = 𝑘 → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) ) |
| 35 | 34 | breq1d | ⊢ ( 𝑚 = 𝑘 → ( ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ) ) |
| 36 | 32 35 | imbi12d | ⊢ ( 𝑚 = 𝑘 → ( ( 𝑢 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ) ↔ ( 𝑢 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ) ) ) |
| 37 | eleq1w | ⊢ ( 𝑢 = 𝑚 → ( 𝑢 ∈ ( ℤ≥ ‘ 𝑘 ) ↔ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) | |
| 38 | fveq2 | ⊢ ( 𝑢 = 𝑚 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 39 | 38 | oveq2d | ⊢ ( 𝑢 = 𝑚 → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) |
| 40 | 39 | breq1d | ⊢ ( 𝑢 = 𝑚 → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 41 | 37 40 | imbi12d | ⊢ ( 𝑢 = 𝑚 → ( ( 𝑢 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ) ↔ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 42 | 36 41 | cbvral2vw | ⊢ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑢 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑢 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑢 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 43 | ralcom | ⊢ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) | |
| 44 | 30 42 43 | 3bitr3i | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) |
| 45 | 44 | anbi2i | ⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ↔ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ) |
| 46 | anidm | ⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) | |
| 47 | 23 45 46 | 3bitr2i | ⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 48 | simpll1 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 49 | simpll3 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝐹 : 𝑍 ⟶ 𝑋 ) | |
| 50 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ 𝑍 ) |
| 51 | 50 | ad2ant2l | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → 𝑚 ∈ 𝑍 ) |
| 52 | 49 51 | ffvelcdmd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ) |
| 53 | 9 | adantrr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 54 | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑚 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) | |
| 55 | 48 52 53 54 | syl3anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) ) |
| 56 | 55 | breq1d | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 57 | 56 | imbi2d | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ↔ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 58 | 57 | anbi2d | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ↔ ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) ) |
| 59 | jaob | ⊢ ( ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) | |
| 60 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑘 ∈ ℤ ) | |
| 61 | eluzelz | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑚 ∈ ℤ ) | |
| 62 | uztric | ⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) | |
| 63 | 60 61 62 | syl2an | ⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) |
| 64 | 63 | adantl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) |
| 65 | pm5.5 | ⊢ ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) | |
| 66 | 64 65 | syl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ∨ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 67 | 59 66 | bitr3id | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 68 | 58 67 | bitrd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 69 | 68 | 2ralbidva | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) → ( ( 𝐹 ‘ 𝑚 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) < 𝑥 ) ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 70 | 47 69 | bitr3id | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 71 | 22 70 | bitrd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 72 | 71 | rexbidva | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 73 | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ | |
| 74 | ffn | ⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) | |
| 75 | 73 74 | ax-mp | ⊢ ℤ≥ Fn ℤ |
| 76 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 77 | 1 76 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 78 | raleq | ⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑚 ∈ 𝑢 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) | |
| 79 | 78 | raleqbi1dv | ⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ 𝑢 ∀ 𝑚 ∈ 𝑢 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 80 | 79 | rexima | ⊢ ( ( ℤ≥ Fn ℤ ∧ 𝑍 ⊆ ℤ ) → ( ∃ 𝑢 ∈ ( ℤ≥ “ 𝑍 ) ∀ 𝑘 ∈ 𝑢 ∀ 𝑚 ∈ 𝑢 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 81 | 75 77 80 | mp2an | ⊢ ( ∃ 𝑢 ∈ ( ℤ≥ “ 𝑍 ) ∀ 𝑘 ∈ 𝑢 ∀ 𝑚 ∈ 𝑢 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) |
| 82 | 72 81 | bitr4di | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∃ 𝑢 ∈ ( ℤ≥ “ 𝑍 ) ∀ 𝑘 ∈ 𝑢 ∀ 𝑚 ∈ 𝑢 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 83 | 82 | ralbidv | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑢 ∈ ( ℤ≥ “ 𝑍 ) ∀ 𝑘 ∈ 𝑢 ∀ 𝑚 ∈ 𝑢 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 84 | elfvdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) | |
| 85 | 84 | adantr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ) → 𝑋 ∈ dom ∞Met ) |
| 86 | cnex | ⊢ ℂ ∈ V | |
| 87 | 85 86 | jctir | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ) → ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) ) |
| 88 | zsscn | ⊢ ℤ ⊆ ℂ | |
| 89 | 77 88 | sstri | ⊢ 𝑍 ⊆ ℂ |
| 90 | 89 | jctr | ⊢ ( 𝐹 : 𝑍 ⟶ 𝑋 → ( 𝐹 : 𝑍 ⟶ 𝑋 ∧ 𝑍 ⊆ ℂ ) ) |
| 91 | elpm2r | ⊢ ( ( ( 𝑋 ∈ dom ∞Met ∧ ℂ ∈ V ) ∧ ( 𝐹 : 𝑍 ⟶ 𝑋 ∧ 𝑍 ⊆ ℂ ) ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) | |
| 92 | 87 90 91 | syl2an | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
| 93 | simpl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 94 | simpr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) | |
| 95 | 1 93 94 | iscau3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) ) |
| 96 | 95 | baibd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 97 | 92 96 | syldan | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 98 | 97 | 3impa | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) ) |
| 99 | 2 | eleq1i | ⊢ ( 𝐿 ∈ ( CauFil ‘ 𝐷 ) ↔ ( ( 𝑋 FilMap 𝐹 ) ‘ ( ℤ≥ “ 𝑍 ) ) ∈ ( CauFil ‘ 𝐷 ) ) |
| 100 | 1 | uzfbas | ⊢ ( 𝑀 ∈ ℤ → ( ℤ≥ “ 𝑍 ) ∈ ( fBas ‘ 𝑍 ) ) |
| 101 | fmcfil | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ℤ≥ “ 𝑍 ) ∈ ( fBas ‘ 𝑍 ) ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( ( ( 𝑋 FilMap 𝐹 ) ‘ ( ℤ≥ “ 𝑍 ) ) ∈ ( CauFil ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑢 ∈ ( ℤ≥ “ 𝑍 ) ∀ 𝑘 ∈ 𝑢 ∀ 𝑚 ∈ 𝑢 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) | |
| 102 | 100 101 | syl3an2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( ( ( 𝑋 FilMap 𝐹 ) ‘ ( ℤ≥ “ 𝑍 ) ) ∈ ( CauFil ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑢 ∈ ( ℤ≥ “ 𝑍 ) ∀ 𝑘 ∈ 𝑢 ∀ 𝑚 ∈ 𝑢 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 103 | 99 102 | bitrid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( 𝐿 ∈ ( CauFil ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑢 ∈ ( ℤ≥ “ 𝑍 ) ∀ 𝑘 ∈ 𝑢 ∀ 𝑚 ∈ 𝑢 ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑥 ) ) |
| 104 | 83 98 103 | 3bitr4d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ 𝑋 ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ 𝐿 ∈ ( CauFil ‘ 𝐷 ) ) ) |